
Exploring Semantic Features for Producing Top-N

Recommendation Lists from Binary User Feedback

Nicholas Ampazis and Theodoros Emmanouilidis

Intelligent Data Exploration and Analysis Laboratory (IDEAL),
Department of Financial and Management Engineering,

University of the Aegean,
82100, Chios, Greece

{n.ampazis,emman}@fme.aegean.gr

http://labs.fme.aegean.gr/ideal

Abstract. In this paper, we report the experiments that we conducted for two
of the tasks of the ESWC’14 Challenge on Linked Open Data (LOD)-enabled
Recommender Systems. Task 2 and Task 3 dealt with the top-N recommendation
problem from a binary user feedback dataset and results were evaluated on the
accuracy and diversity respectively of the recommendations produced in a Top-N
recommendation list for each user. The DBbook dataset was used in both tracks
in which the books had been mapped to their corresponding DBpedia URIs.
Since the mappings could be used to extract semantic features from DBpedia,
in all our experiments, we avoided the use of any collaborative filtering methods
(e.g. user/item K-nearest neighbors and matrix factorization approaches) and
instead focused exclusively on the semantic features of the items. Even though
the performance of our methods did not beat the best performing approaches of
other teams, our results indicate that it is indeed feasible to create effective rec-
ommender systems which fully understand the items they deal with by utilizing
information from the Semantic Web.

Keywords: Top-N Recommendations, Content-based Recommender Systems,
Semantic Web

1 Introduction

The literature review of studies on recommender systems (see for example, the Netflix
prize solutions summarizing paper of “Bellkor’s Pragmatic Chaos” team [1,2]), readily
makes apparent that latent factor models (matrix factorization, singular value decom-
position, etc), and K-nearest neighbors approaches are among the ones most suited to
the problem. However, besides the knowledge of explicit user-item ratings, additional
information (if available) can be exploited to define or improve similarities between
users and/or items.

Recent developments in the Semantic Web community now enable us to set up
links between items in different data sources, and allow us to automatically extract
content and meta information for the available items. Item similarity can hence be
calculated based on the content comparison of the given items. In the literature this

http://labs.fme.aegean.gr/ideal

2 Top-N recommendations from Semantic Features

approach is known as content-based recommendation [3]. Unlike collaborative filtering
approaches, in a content-based recommender system, recommendations are based solely
on the profile built up by analyzing the content of items that the target user has
interacted with in the past. The recommendation problem hence becomes a search for
items, the content of which is most similar to the content of items already preferred
by the target user. In addition, users can be modeled on the basis of the items that
they have collected and thus we can define content-based similarity metrics between the
users and the different items.

In this work, we explored a content-based recommendation approach for both Tasks
2 and 3 of the ESWC’14 Challenge on LOD-enabled Recommender Systems and we re-
port on the obtained results. By using LOD and semantic technologies alone, in favour
of adopting any of the well known collaborative filtering approaches, we developed a
knowledge-enabled content-based recommendation methodology which performed suf-
ficiently well on both tasks. This indicates that content-based approaches that rely
entirely on the utilization of semantic features can perform reasonably well on a variety
of recommendation metrics.

2 Methodology

Both tracks utilized the Dbook dataset which contains user preferences on items re-
trieved from the Web. The common training set provided for Task 2 and Task 3 con-
tained tab-separated triplets of the form userID/itemID/rating. The ratings were binary,
with 1 indicating that the item was relevant for the user, and 0 meaning irrelevant. The
training set contained 72372 ratings that 6181 users gave to 6733 items. Overall 8170
book titles were available in the Dbook dataset which were mapped to their correspond-
ing DBpedia URIs. Those DBpedia URIs were used to extract semantic features from
DBpedia by issuing SPARQL queries at the endpoint http://dbpedia.org/sparql.
For each $DBpedia uri we extracted the subjects and author(s) using the following
queries respectively:

SELECT ?o WHERE { <“$DBpedia uri”> <http://purl.org/dc/terms/subject> ?o.}

SELECT ?o WHERE { <“$DBpedia uri”> <http://dbpedia.org/ontology/author> ?o.}

We extracted 7079 distinct subjects and 3046 different authors which were used to repre-
sent documents as binary semantic feature vectors in R

N withN = 7079+3046 = 10125.
For running our experiments we utilized a PostgreSQL1 database schema which is

shown in Figure 1. The “ratings” table contains the binary ratings training set and
the table “features documents” contains the binary document feature vectors described
above. For representing the document vectors in the database we employed MADlib2

which is an open-source library for scalable in-database analytics with support for Post-
greSQL. Madlib implements a sparse vector data type, named “svec”, which provides
compressed storage of vectors that have many duplicate elements (in our case zeros).
The svec type employs a simple Run Length Encoding (RLE) scheme to represent sparse
vectors as pairs of count-value arrays. For example, the svec array representation:

’{1085,1,3777,1,532,1,1682}:{0.0,1.0,0.0,1.0,0.0,1.0,0.0}’::madlib.svec

1 http://www.postgresql.org
2 http://madlib.net

http://dbpedia.org/sparql

Top-N recommendations from Semantic Features 3

feature_documents

bookID

vec_rep

ratings

userID

bookID

binaryrating

1

oo

Fig. 1. Database schema

says that 1085 occurrences of 0 are followed by 1 occurence of 1, followed by 3777
occurrences of 0, etc. This example uses just 7 integers and 7 floating point numbers
to store the array. Further, it is easy to implement vector operations that can take
advantage of the RLE representation to make computations faster. The SVEC module
provides a library of such functions like adding svec vectors and calcuating distances
between them. The field “vec rep” in the “features documents” contains the svec vector
representation of each bookID.

Our approach for providing Top-N recommendation is that users can be modeled
on the basis of the items for which they’ve expressed a preference. Thus users can be
also represented as vectors in R

N (N = 10125), where their feature vectors can be
calculated iteratively by adding or subtracting the document semantic feature vectors
for which they’ve expressed a positive or negative signal respectively. This allows us to
embed the users onto the document semantic feature space and define content-based
similarity metrics between the users and the different items. Consequently we are able
to populate the Top-N recommendation list for each user with the items that exhibit
the highest similarities with the user’s feature vector.

The first listing in Algorithm 1 depicts the MADLib SQL methodology for costruct-
ing the feature vector “uvec” for each $DBbook userID in the training set. For each
user we loop over the items for which this user has expressed a binary rating and add
or subtract the correspond item feature vector according to the rating being 1 or 0 re-
spectively. At the end of looping process each user has been assigned a semantic feature
vector which can then be used to provide Top-N recommendations for Tasks 2 and 3 as
explained below.

3 Task 2 experiments

Task 2 participants were asked to add a corresponding relevance score for specific user-
item pairs in the evaluation dataset. The relevance scores were used by the evaluation
service to form a Top-5 item recommendation list for each user. Thus for each user only
items in the evaluation set were considered to form the Top-5 recommendation list. The
evaluation metric for the task was the F-measure@53.

Listing 2 in Algorithm 1 shows how the relevance score for each “$DBbook userID
/ $DBbook itemID” pair in the evaluation can be calculated within the database, pro-
vided that the semantic feature vector for the user in question has been calculated as in

3 http://sisinflab.poliba.it/semanticweb/lod/recsys/2014challenge/eswc2014-lodrecsys-
metrics evaluationservice.pdf

4 Top-N recommendations from Semantic Features

Algorithm 1 Methodology in SQL

1: for r,p in (SELECT ratings.bookID, ratings.binaryrating from ratings,feature documents WHERE rat-
ings.bookID=feature documents.bookID AND ratings.userID=$DBbook userID) loop

–CONSTRUCT THE USER FEATURE VECTOR
if p=1 then
uvec:= (SELECT MADlib.svec plus(uvec, (SELECT vec rep FROM feature documents WHERE

bookID = r)));
else
uvec:= (SELECT MADlib.svec minus(uvec, (SELECT vec rep FROM feature documents WHERE

bookID = r)));
end if;
end loop;

2: Task2: for r in SELECT bookID, 1- MADlib.tanimoto distance(vec rep, uvec)
FROM feature documents
WHERE bookID=$DBbook itemID loop
return next r;
end loop;

3: Task3: for r in SELECT bookID, 1- MADlib.tanimoto distance(vec rep, uvec)
FROM feature documents
ORDER BY 2 DESC LIMIT 50 loop
return next r;
end loop;

listing 1. We tried a variety of similarity/distance metrics (cosine, euclidean distance,
etc), but the best results were obtained by calculating the Tanimoto distance which is
is based on the ratio between the size of the intersection of two vectors by the size of
the union. Table 1(a) shows the summary of the submission results as reported by the
evaluation service.

4 Task 3 experiments

Task 3 dealt with the diversity of the items produced in a Top-20 recommendation
list for each user with respect to the author and subject properties of the items. The
recommendations lists were computed by considering all unrated items by each user and
selecting the Top-20. Even though the required format of the submission was of the form
“$DBbook userID/$DBbook itemID/score”, the ranking of the items by their score
within the Top-20 list was not taken into account by the evaluation system. Instead the
evaluation metric considered the participants’ positions in the respective F-measure@20
and ILD@20 (as defined in footnote3) rankings. More specifically, first a ranking with
all participants was generated according to their ILD@20 values. A second ranking with
all participants was then generated according to their F-measure@20 values. For each
participant the score was finally computed as the mean of the positions in the first two
rankings.

Listing 3 in Algorithm 1 shows how we calculated within the database the Top-N
recommendations for unseen items for each distinct “$DBbook userID” in the evaluation
set. Again the semantic feature vector for each user is calculated as in listing 1. As in
Task 2, we tried a variety of similarity/distance metrics and the best results were still
obtained by utilizing the Tanimoto distance. In order to account for the diversity of
the items in the list we initially produced a larger Top-50 list of items and we then
measured all the pairwise similarities between those 50 items in the 10125-dimensional
feature space. The items that appeared more frequently to exhibit zero similarities

Top-N recommendations from Semantic Features 5

Task 2 Submitted Task 3 Submitted Corrected

P@5 0.6225 P@20 0.0228 0.0134

R@5 0.4662 R@20 0.0738 0.0447

F1@5 0.5331 F1@20 0.0348 0.0206

ILD@20 0.4447 0.4635

(a) (b)
Table 1. Results on the evaluation set for Task 2 (a) and Task 3 (b)

with their peers finally made it to the Top-20 list. That list was then ordered by the
similarity of the items to the user’s feature vector (even though that was unnecessary as
explained above). Unfortunately due to a bug in the driver script, all the initial items in
the Top-50 list were take into account during sorting (not just the Top-20 more diverse
items), which resulted in just keeping the first 20 items from the initial Top-50 list,
and therefore neglecting the diversity calculations. The bug was discovered just a few
hours after the Challenge’s deadline, but since the evaluation service was still accepting
solutions we report it here for completeness4. It is interesting to note the increase in the
ILD@20 value of the corrected submission which comes of course at the price of a drop
in the F1@20 score. Table 1(b) shows the summary of the submission results as reported
by the evaluation service both for the last result submitted within the deadline, and
the bug-corrrected result.

5 Conclusions

In this paper, we invesigated the exclusive use of semantic technologies for Tasks 2 and 3
of the ESWC’14 Challenge on LOD-enabled Recommender Systems, combined with an
efficient in-database analytics approach for efficiently producing the recommendations.
Our results indicate that the utilization of semantic technologies can perform well on
a variety of recommendation metrics. This makes interesting the prospect of further
investigating hybrid algorithms between collaborative filtering and semantic approaches,
that would effectively complement each other, and thereby improve the recommendation
performance.

References

1. Koren, Y.: The BellKor Solution to the Netflix Grand Prize. Available from
http://www.netflixprize.com/assets/GrandPrize2009 BPC BellKor.pdf (August 2009)

2. Toscher, A., Jahrer, M., Bell, R.: The Big Chaos Solution to the Netflix Grand Prize. Avail-
able from http://www.netflixprize.com/assets/GrandPrize2009 BPC BigChaos.pdf (Au-
gust 2009)

3. Pazzani, M., Billsus, D.: Content-based recommendation systems. In Brusilovsky, P., Kobsa,
A., Nejdl, W., eds.: The Adaptive Web. Volume 4321 of Lecture Notes in Computer Science.
Springer Berlin Heidelberg (2007) 325–341

4 Final reported ranking for the teams is based on results submitted up to the deadline

	Lecture Notes in Computer Science
	Introduction
	Methodology
	Task 2 experiments
	Task 3 experiments
	Conclusions

