
Aggregation Strategies for Linked Open
Data-enabled Recommender Systems?

Pierpaolo Basile, Cataldo Musto, Marco de Gemmis,
Pasquale Lops, Fedelucio Narducci, and Giovanni Semeraro

Dept. of Computer Science - University of Bari Aldo Moro, Bari - ITALY

Abstract. This paper provides an overview of the work done in the
Linked Open Data-enabled Recommender Systems challenge, in which
we proposed an ensemble of algorithms based on popularity, Vector Space
Model, Random Forests, Logistic Regression, and PageRank, running on
a diverse set of semantic features. We ranked 1st in the top-N recom-
mendation task, and 3rd in the tasks of rating prediciton and diversity.

1 Introduction and Description of the Challenge

Over the last years, more and more semantic data are published following the
Linked Data principles. These datasets, interlinked with each other, form a global
graph, called Linked Open Data (LOD) cloud. In the context of recommender
systems, this data might be useful to interlink information about users, items,
and their relations. The challenge is to investigate whether and how this large
amount of linked knowledge may help to mitigate the cold-start and the data
sparsity problems. This was the primary goal of the LOD-enabled Recommender
Systems challenge, aiming to show how LOD can boost the creation of a new
breed of knowledge-enabled and content-based recommender systems. The con-
test consisted of 3 tasks: Task 1: Rating prediction in cold-start situations,
i.e. when users have a few past ratings, and when items have been rated by a
few users; Task 2: Top-N recommendation from binary user feedback,
i.e. generating ranked lists of items for which only binary ratings are available;
Task 3: Diversity, i.e. evaluation of both accuracy of the recommendation list,
and diversity of items in the list (in terms of Intra-List Diversity - ILD).
Given the domain of books, diversity is measured with respect to the properties:
http://dbpedia.org/ontology/author and http://purl.org/dc/terms/subject.

The dataset used is DBbook, which contains user data and preferences re-
trieved from the Web in the book domain. Each book is mapped to the corre-
sponding DBpedia URI. The mapping contains 8,170 DBpedia URIs, which can
be used to extract features from datasets in the LOD cloud. The training set for
Task 1 contains 75,559 ratings (scale 0-5) provided by 6,181 users on 6,166 items
which have been rated by at least one user. The training set for Task 2 and Task
3 contains 72,372 binary ratings provided by 6,181 users on 6,733 items.
? This work fulfils the research objectives of the PON 02 00563 3470993 project VIN-

CENTE, funded by the Italian Ministry of University and Research.



2 Description of the UNIBA approach

2.1 Methods

The methodology adopted by UNIBA is based on a blend of the following meth-
ods/algorithms to face the three different tasks of the challenge:
1) Popularity: item-based popularity recommender, where the popularity of an
item is computed as the ratio between the number of positive ratings it received
and the total number of ratings (positive and negative) it received by all users.
2) enhanced Vector Space Model (eVSM) with negation: content-based
recommender based on an incremental dimensionality reduction technique called
Random Indexing. Details about the approach are in [4], in which a negation
operator [6] is adopted to represent negative preferences, besides positive ones.
3) PageRank with Priors: widely used method to obtain an authority score
for a node based on the network connectivity, in which a non-uniform personal-
ization vector may be used for assigning different weights to different nodes [3].
4) Random Forests (RF) [1]: ensemble learning method used for classifica-
tion or regression, which combines different tree predictors constructed using
different samples of the training data and random subsets of the data features.
5) Logistic Regression (LR): supervised learning method for classification
which builds a linear model based on a transformed target variable.

2.2 Data Model

The above mentioned methods used a combination of the following features:
1) Keywords: we processed the book descriptions extracted from Wikipedia.
Stopwords were removed, and keywords were stemmed. For books not existing
in Wikipedia, we processed the DBpedia abstracts.
2) Tagme concepts: Tagme [2] is an entity linking algorithm able to identify
Wikipedia concepts (i.e. DBpedia nodes) occurring in short pieces of text.
3) DBpedia properties: for each book, we selected the following 10 most fre-
quent properties in DBpedia (http://dbpedia.org/ removed for brevity):
ontology/wikiPageWikiLink, http://purl.org/dc/terms/subject, property/genre,
property/publisher, ontology/author, property/followedBy, property/precededBy,
property/series, property/dewey, ontology/nonFictionSubject.

In order to run the PageRank, data in the training set and information
from DBpedia were merged and represented using a graph model. Users/items
are represented as nodes, and links are the (positive) users’ feedback. Then,
the graph is enriched with other nodes linked through the previous DBpedia
properties. Finally, these nodes are linked to further nodes by following specific
paths in DBpedia. To this aim, we exploited the internal wiki links of the new
added nodes and more generic categories according to the hierarchy in DBpedia.
We selected other resources of the same category/genre, the genres pertaining to
the author of the book, other resources written by that author, and the genres of
the series to which the book belongs to. The graph is pruned by removing nodes
which are neither users nor books having a total number of inlinks and outlinks
less than 5, and eventually consisted of 340,000 nodes and about 6 millions links.



3 Experimental Evaluation

3.1 Task 1: Rating prediction in cold-start situations

We ranked 3rd in Task 1 using a linear combination of the following algorithms
(weights in parenthesis), by obtaining a RMSE equal to 0.8742:
Random Forests (0.20), using 2,500 trees, and tagme concepts as features,
along with DBpedia properties described in Section 2.2. We adopted the imple-
mentation provided by the Weka library (www.cs.waikato.ac.nz/ml/weka/).
Logistic Regression (0.60), using the following features: number of positive,
negative and total feedbacks provided by the users (items), ratio between positive
(negative) and total number of feedbacks provided by the users (items), stems
extracted by the item descriptions, DBpedia properties (Section 2.2), and tagme
features. As regards the last three sets of features, their value is the number of
occurrences of that feature. Each example, represented using more than 220,000
features, is labeled with the rating provided by that specific user for that specific
item. All the features were normalized in the [0,1] interval. We adopted the imple-
mentation provided by Liblinear (www.csie.ntu.edu.tw/˜cjlin/liblinear/.
RF and LR ranked items according to the probability of the class.
Combination of baseline predictors (0.20), i.e. user/item average rating.
Since a significative number of users have no positive ratings in the training set,
we assigned as positive feedback the 5 most popular items.

3.2 Task 2: Top-N recommendation from binary user feedback

We ranked 1st in Task 2 by blending together the following five different algo-
rithms, using the Borda count aggregation method:
eVSM: we implemented a content-based recommender as described in [4]. The
best result was obtained using tagme concepts as features, 500 as the context
vectors dimension, and the negation operator for negative users’ preferences.
Popularity: simple baseline as described in Section 2.1, which recommends
items by ranking them according to their popularity (in decreasing order).
Random Forests: we used 5,000 trees and the same features as in Task 1.
PageRank with Priors: a different configuration of weights is assigned to the
nodes. Generally, the prior probability assigned to each node is evenly distributed
( 1

N , where N is the number of nodes). We assigned a higher weight to some nodes
according to the user profile. More specifically, 80% of the weight is evenly dis-
tributed among books liked by the users (0 assigned to books disliked by the
users), and 20% of the weight is evenly distributed among the remaining nodes.
The damping factor of PageRank was set to 0.85. The PageRank computed for
each node is used to rank the items in the test set. We adopted the implemen-
tation of PageRank provided by the Jung library (jung.sourceforge.net).
Logistic Regression: the configuration is as in Task 1. The only difference is
that each example is labeled with the binary feedback provided by that specific
user for that specific item.



Similarly to Task 1, RF and LR ranked items according to the probability
of the class, and the 5 most popular items are used for users with no positive
ratings in the training set. Table 1 reports the performance of the single methods,
eventually aggregated using the linear combination and Borda count. In Borda
count, each item in a ranked list produced by each single method is awarded with
a score given according to its position in that list. The lower the item position
in the list, the smaller the score. The final score of each item is obtained by
summing all the single scores, and this allows to produce the aggregated ranking
(in decreasing score value). The single scores in the sum were weighed in order
to boost some single methods (weights are reported in parenthesis).

3.3 Task 3: Diversity

We ranked 3rd in the Task 3 by using the PageRank with Priors algorithm,
running on the graph described in Section 2.2. We assigned a higher weight
to some nodes according to the user profile, and to a heuristic of diversity.
More specifically, 80% of the weight is evenly distributed among books liked
by the users (0 for books disliked by the users), 10% of the weight is evenly
distributed between all the nodes which are not books, and 10% of the weight is
proportionally distributed among the remaining books (not rated as positive or
negative) according to a diversity score computed for each item. The diversity
score of each item I with respect to the profile of the user i is computed in order
to take into account both the similarity of, and the novelty between the user
profile and the item. Let Ui the set of DBpedia properties of items liked by the
user i, and I the set of DBpedia properties of I. The similarity is computed
as the Jaccard index between Ui and I, while the novelty is the ratio between
the cardinality of I − Ui (i.e. the set of features of I different from those of
items liked by the user), and the cardinality of I. If the item has features not
overlapping with those occurring in the user profile, the similarity is equal to 0,
and the novelty is equal to 1. The diversity score is an average between similarity
and novelty. Weighing more those items with a higher diversity score allows to
impose a bias to the PageRank towards items different from the user profile. The
final score computed by the PageRank for each node is used to rank the nodes.
Then, the top-20 (book) nodes are selected, as requested by the task. The results
obtained by our algorithm are F@20=0.0481 (Pr@20=0.0319, Re@20=0.0977),
and ILD@20=0.4717.

Table 1. Results for Task 2.

eVSM Popularity RF PageRank LR Linear Borda
(0.10) (0.20) (0.25) (0.25) (0.20) comb. count

Pr@5 0.6195 0.6431 0.6260 0.6433 0.6445 0.6568 0.6586
Re@5 0.4688 0.4875 0.4751 0.4871 0.4888 0.5009 0.5048
F1@5 0.5337 0.5546 0.5402 0.5544 0.5560 0.5684 0.5715



4 Discussion

An important outcome of our participation to the challenge is that it was not
possible to face all the different tasks using just a single method. We ran hun-
dreds of experiments using different algorithms and features. Results are not
reported in the paper due to space limitation, but allow to draw important con-
clusions. Very simple algorithms based on Vector Space Model and probabilistic
models (BM25 and Divergence from Randomness) have performance comparable
to more complex algorithms, when fed with semantic features coming from the
LOD cloud. The usefulness of the semantic features is also evident when using
recommendation algorithms based on classifiers, such as RF or LR, in which
the best results were obtained using features based on DBpedia properties and
tagme concepts. The use of LOD also helps to diversify the results, due to the
wealth of relations taken into account in the recommendation process. To sum
up, there is an empirical evidence of the potential of the LOD to define advanced
semantic recommender systems, even though it is necessary to investigate inno-
vative ways to leverage this huge amount of knowledge. When compared to (few)
previous attempts to use LOD to build recommender systems, the novelty of our
methods relies on 1) the use of entity linking approaches, such as tagme, which
represents an innovative way to access DBpedia knowledge, and on 2) the use
of domain-specific DBpedia properties/paths to build the graph model. As to
the former aspect, the typical way to define an entry point to DBpedia is to
identify the URIs corresponding to items (books for example) and extract the
corresponding properties. This complex process of mapping may hinder the use
of DBpedia; indeed, the organizers of the challenge explicitly provided a map-
ping of books to DBpedia URIs. The use of entity linking algorithms represents a
novel way to access the DBpedia knowledge through the analysis of the item de-
scriptions, without exploiting any explicit mapping of items to URIs. As regards
the exploitation of domain-specific properties/paths in DBpedia, this could al-
low to fully exploit the semantics of DBpedia relations, differently from previous
approaches based just on link-based measures built on DBpedia [5].
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