
Hybrid Recommending Exploiting Multiple DBPedia
Language Editions

Ladislav Peska and Peter Vojtas

Faculty of Mathematics and Physics

Charles University in Prague
Malostranske namesti 25, Prague, Czech Republic

peska|vojtas@ksi.mff.cuni.cz

Abstract. In this paper we describe approach of our SemWex1 group to ESWC
RecSys Challenge. Our method is based on using Content Boosted Matrix
factorization [CBMF], where objects are defined through their content-based
features. Features were comprised of both direct DBPedia predicate-object pairs
and derived semantical information.
Total of seven DBPedia language editions were used to form our dataset. In the
paper we will further describe our methods for semantical information creation,
data filtration, algorithm details and settings as well as decisions made during
the challenge and dead ends we faced.

Keywords: Hybrid Recommender systems, Linked Open Data, DBPedia,
Matrix factorization.

1 Introduction

Recommending and estimating user preferences on the web are both important
commerce application and interesting research topic. The amount of data on the web
grows continuously and it is impossible to process it directly by a human. Many
solutions were adopted ranging from keyword search engines to information
aggregators, semantic web or recommender systems. Although majority of the
research effort was initially spent on the collaborative filtering based on explicit user
rating, collaborative systems might highly suffer from cold start problem.

Using attributes of the objects (and hence content-based or hybrid recommender
systems) can speed up learning curve and reduce cold start (and also new object)
problem. Various domains and systems however differ greatly in how many and how
useful attributes can be provided in machine readable form. This is where Linked
Open Data and DBPedia as one of its cornerstones comes into play and with its vast
amount of machine-readable data it can be used to populate object attributes and
features.

Related Work: Unfortunately it is out of scope of this paper to provide more
elaborated overview, so we stick only to the closest work. The preference learning is
based on third-party algorithm Content-boosted matrix factorization (CBMF)
originally presented by Forbes and Zhu [CBMF]. This method extends classical
matrix factorization [Koren] by adding object attributes and stating that each object’s

latent factors vector is a function of its attributes latent factors. Our previous
experiments with this method on the domain of secondhand bookshop are described
in paper [SerSy]. Some decisions made e.g. during dataset preparation are based on
observations from this work. The recommending algorithm laid some constraints on
usage of RDF triples. The RDF records are mapped directly as attributes of the object.
Although some graph based features can be employed, it is not natural for CBMF. We
suggest approach of Ostuni et al.[Vito RecSys13] as an interesting approach
leveraging graph nature of LOD.

2 Recommending Method

Matrix factorization techniques are currently leading methods for learning user
preferences. Given the list of users },...,{ 1 nuuU = and objects },...,{ 1 mooO = , we can

form the user-object rating matrix [] mnuor ×=R . For a given number of latent factors f,

matrix factorization aims to decompose original R matrix into UOT (1), where U is

fn × matrix of user latent factors (T
iµ stands for latent factors vector for particular

user iu) and OT
 is mf × matrix of object latent factors (iσ is vector for particular

object io). Unknown rating for user i and object j is predicted as j
T
iijr σµ=ˆ . Matrix

factorization target is to learn matrixes U and O minimizing errors on known ratings
(usually with some regularization penalty to prevent overfitting. Such equation can be
solved e.g. by Stochastic Gradient Descent (SGD) iteratively updating user and object
latent factors. See e.g. Koren et al. [5] for more information on matrix factorization
techniques.

Content boosted matrix factorization method (CBMF) is based on the assumption
that each object’s latent factors vector is a function of its attributes. Having fm×O

matrix of object latent factors, am×A matrix of object attributes and fa×B matrix of

latent factors for each attribute, the constraint can be formulated as O = AB. Under
this constraint, we can reformulate both matrix factorization problem (1), its
optimization equation and gradient descend equations (2):

{ []
4434421
K

321
M maaf

T

fn

T

T

TTT aa

××

×

××

==≈ 212

1

BAUBUOR µ
µ

 (1)

))(())((
),(

BBBB λµµησσµλµηµµ −−+=−−+= ∑∑
∈∈

T
ijj

TT
i

Kji
ijjjij

T
j

TT
i

uiKj
ijii aaraar (2)

CBMF method has also some drawbacks. One of the most important is time

complexity, rising with both number of latent factors f and number of attributes a.
This prevents us from using all crawled attributes and forced us to heuristically
choose a sample of them. Also max running time and number of iteration parameters
were employed.

The ratings were in some experiments normalized by simple ANOVA model
consisting of average rating for user ub , object ib and global averageµ . Other

additions to this normalization based on DBPedia data were tested, however did not
improve evaluation metrics.

iuiuiu bbr ,, εµ +++= (3)

Post-processing was applied for task 3 in order to increase diversity of the resulting
set, see Algorithm 1. During evaluation, we have observed high fluctuation of
recommended objects, so we have employed bagging over several CBMF runs (object
rating was summed over all runs), which highly improved precision with only little
diversion penalty.

Algorithm 1: For producing top-k list of recommending objects, k=20, we first produce list of
top-l, l > k best rated objects for each user. Then iteratively algorithm take the best object and
eliminate all objects with the same author (or any other restricted features). If no more object is
available, then the top-l is reset to all objects except already selected ones.

function PostProc(List top-l, k, List feat){

 while(selectObj < k){

 reset top-l;

 while(sizeof(top-l)>0){

 get best object from top-l; selecObj++;

 delete O ϵ top-l: feat[O] ∩ feat[bestO] != ᴓ;

 } } }

3 Dataset and Semantics

The dataset used by CBMF consisted of both direct DBPedia triples and added
metadata created from them. As for DBPedia, we first downloaded all potentially
interesting data and then evolve methods to filter them. The core dataset consisted of
RDF triples with patterns: (_book, ?p, ?o), (?o, ?p, _book), (_author, ?p, ?o) or (?o,
?p, _author), where _book is book URI and _author is an URI of author of the current
book. In our approach, we did not distinguish whether _book or _author is in the role
of subject or object in the dataset. For each triple, the corresponding DBbook_itemID
is also stored. Data were then transformed to fill feature matrix A in a following way:
Rows consist of DBbook_itemIDs, columns consists of all known (seen in the data)
combinations of ?o, and ?p and value of each cell is binary information whether for
current DBbook_itemID exist ?o,?p in the dataset.

Enrichment and Alteration of the Core Dataset: Generally one of disadvantages
of using CBMF for LOD data is a flat nature of the object attributes. We can either
stick only to the direct attributes, automatically traverse attributes up to a certain
depth or we can explore only some parts of DBPedia graph. We choose the third
option as using sole direct attributes would result in large loss of information and
uniform traversing would on the other hand produce way too much useless data.

Some data alternations were performed when necessary; we mention only more
interesting data enrichment and transformation:

Transformation of RDF into A matrix is particularly unfriendly to the numeric
values, so several meaningful features with numeric values (e.g. number of pages or
release date) were mapped into equipotent intervals and further used in that way.

All notions of similar books (e.g. preceededBy, notableWork etc.) and similar
persons (e.g. influences, influencedBy, author etc.) were grouped together and
published as similarWork and similarPerson features.

In some cases the value (RDF object) of a predicate is not so important and the sole
existence of the feature may carry enough information. So, for each ?p, attribute
has_predicate+?p was added with binary value whether current book has feature ?p.

We have added information whether the book has wikipage also in other Wikipedia
language editions to exploit multilingual nature of users. Also if DBPedia language
edition exists, we can add language specific data to the core dataset. Nevertheless the
data analysis showed that language editions contain mostly the same information
except for wikiPageWikiLink property, which was added to the dataset.

Further manually annotated semantical information was added for authors and
genres exploiting axes like serious or fun literature, male or female target audience or
clustering genres.

 To reflect possible similarity on super categories of books, we also collected 3
levels of super-categories through skos:broader property.

Data filtration: The above described raw dataset contained about 2,5M triples,
2800 distinct features and over 400K distinct feature × value pairs which is far
beyond reasonable computation time. The algorithm time complexity is dependent on
#attributes i.e. feature × value pairs, so we focused on decreasing its number without
severe damage to information richness of the dataset. Three basic filters were
designed:

• Feature name filter: Keep only features not present on the list of useless
features. The list was formed manually containing features with no or too
little meaning e.g. dbpedia-owl:wikiPageId, rdfs:label, rdfs:comment etc.

• Feature support filter: Keep only features with at least ks support among
objects and at least kvc distinct values, with ks set to 5% and kvc to 2.

• Feature values support filter: Keep only feature values, where its support
is between kv1 and kv2, set to kv1= 5 books and kv2, = 90%.

Setting right boundaries is a bit tricky: basically we need features and values which
will reasonably distinguish books into not too small or big groups. The exact setting
was tuned experimentally.

After applying filters, we have received a approx. 100 features and 35K distinct
feature × value pairs. Although this is already reasonable amount of data for some
initial experiments, the algorithm running time was still too slow and only a few
iterations could be done. More speculative heuristics were applied thereafter mostly in
form of not using / using only certain features or using only top-k feature values
according to its support. After series of preliminary evaluations, the resulting dataset
was formed after applying:

• Not using super-categories and has_predicate features.
• Use only top-k most supported similarWork, similarPersons and other

feature values (evaluated separately, k=300).

After applying these heuristics, the resulting dataset contains approx. 285K triples,
and 60 different features.

4 Results and Discussion

Table 1 contains results of the on-line evaluation. In general were more successful
methods with less latent factors or based on smaller datasets. This might be caused by
constraint on maximal CBMF running time, or perhaps also because of too much
noise within larger datasets. Our future work should definitely include experiments
and metrics defining data purity and usefulness specially if comes from third party
resources.

Table 1. Results of an online evaluation

Task Method Score
Task 1 CBMF (5 lat. factors) + ANOVA 0.9369 RMSE
Task 1 Sole baseline predictors _ RMSE
Task 2 CBMF (5 lat. factors) + ANOVA 0.555 F-measure
Task 2 CBMF (5 lat. factors) _ F-measure
Task 3 CBMF (5 lat. factors) + ANOVA _ F-measure, _ ILD
Task 3 Bagging + post-processing (various CBMF) _ F-measure, _ ILD
During work on the challenge we have discovered several dead ends and problems,

namely super-categories are often too general to provide any reasonable information,
hypothesis about importance of feature occurrence itself (has_predicate feature) was
also not confirmed. The effect of using multiple DBPedia language editions is
questionable, however we do not abandon this idea yet as the challenge dataset seems
to be comprised mostly from English-speaking users.

On the other hand ANOVA normalization was very useful in both tasks 1 and 2
and other variants of rating normalization should be examined. The post-processing
effectively increased diversity and bagging improved precision with minimal decrease
of diversity for task 3, so we encourage others to use it as well.

Acknowledgments: This work was supported by grants SVV-2014-260100, P46
and GAUK-126313.

References

1. Forbes, P. & Zhu, M. Content-boosted matrix factorization for recommender systems:
experiments with recipe recommendation. RecSys 2011, ACM, 2011, 261-264

2. Koren, Y.; Bell, R. & Volinsky, C. Matrix Factorization Techniques for Recommender
Systems. Computer, IEEE, 2009, 42, 30-37

3. Ostuni, V. C.; Di Noia, T.; Di Sciascio, E. & Mirizzi, R. Top-N recommendations from
implicit feedback leveraging linked open data, RecSys 2013, ACM, 2013, 85-92

4. Peska, L.; Vojtas, P.: Using LOD to Improve Recommending on E-Commerce.
To appear on SerSy 2013, http:// www.ksi.mff.cuni.cz/~peska/sersy13.pdf

