

adfa, p. 1, 2011.

© Springer-Verlag Berlin Heidelberg 2011

Rapid Deployment of a RESTful Service for Data

Collected by Oceanographic Research Cruises

Linyun Fu
1
 and Robert A. Arko

2

1Tetherless World Constellation, Rensselaer Polytechnic Institute, Troy, NY, United States
2Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, United States

ful2@rpi.edu, arko@ldeo.columbia.edu

Abstract. The Rolling Deck to Repository (R2R) program has
the mission to capture, catalog, and describe the underway
environmental sensor data from US oceanographic research
vessels and submit the data to public long-term archives.
Information about vessels, sensors, cruises, datasets,
people, organizations, funding awards, logs, reports, etc.
is published online as Linked Open Data, accessible through
a SPARQL endpoint. In response to user feedback, we are
developing a RESTful service based on the Elda open-source
Java package to facilitate data access. Our experience
shows that constructing a simple portal with limited schema
elements in this way can significantly reduce development
time and maintenance complexity compared to PHP or Servlet
based approaches.

Introduction. The Rolling Deck to Repository (R2R) program addresses the need

for consistent preservation and dissemination of environmental sensor data routinely

acquired by oceanographic research vessels in the U.S. academic fleet. R2R collects

information about each expedition that includes vessel identifier and operator; cruise

identifier, project title, and research program; port stops and dates; science party

names, institutions, and roles; funding agency and award identifier; sensor identifier,

classification, manufacturer, and model; cruise reports and event logs; and file mani-

fests.

R2R publishes content as Linked Data [1] using the D2RQ
1
 software package,

which transforms content from a SQL database to RDF resources in a virtual triple

store. Content is mapped to community-standard controlled vocabularies where these

are available online as RDF with stable URIs, such as the NERC Vocabulary Server
2
.

For example, one vessel called “Atlantis” is assigned the identifier

<http://data.rvdata.us/id/vessel/33AT> and is described with the following

triples, encoded in Turtle format for the sake of simplicity.

<http://data.rvdata.us/id/vessel/33AT>

 rdf:type <http://data.rvdata.us/vocab/id/class/Vessel> ;

 dcterms:identifier "33AT" ;

 rdfs:label "Atlantis" ;

 r2r:Operator <http://data.rvdata.us/id/organization/edu.whoi> ;

1 D2RQ. http://d2rq.org/d2r-server
2 NERC Vocabulary Server (NVS), Version 2.0. http://vocab.nerc.ac.uk/

 r2r:Owner <http://data.rvdata.us/id/organization/mil.navy> ;

 skos:exactMatch <http://vocab.nerc.ac.uk/collection/C17/current/33AT/> .

The Linked Data API
3
 was developed in response to a requirement from Web devel-

opers that Linked Data in the RDF data structure should be accessible in a way that is

familiar to them, namely through RESTful services [2], in addition to through

SPARQL endpoints. The Linked Data API achieves this goal by defining a proxy

layer on top of existing SPARQL endpoints that 1) translates HTTP requests into

SPARQL queries, and 2) renders the returned results as required by the request sender

using content negotiation, suffixes and parameters.

The first part, HTTP-request-to-SPARQL-query translation, is done by modules

called selectors, whereas the second part, rendering, is done by viewers and format-

ters. Selectors, viewers and formatters are usually grouped together to form end-

points. Unlike SPARQL endpoints which accept SPARQL queries, Linked Data API

endpoints accept HTTP requests. Figure 1 shows some important classes along with

relationships among them in Linked Data API, created with COE [3].

Fig. 1. Part of Linked Data API ontology4. Prefixes used:

rdfs: http://www.w3.org/2000/01/rdf-schema#

api: http://purl.org/linked-data/api/vocab#

Note that only part of the whole Linked Data API ontology is shown in Figure 1

for the sake of simplicity. For example, we do not show the formatter class in the

Figure because it deals with the detailed representation of the returned Web page in

response to an HTTP request and is not the focus of this paper. We also omit the

rdfs:Literal valued api:base property of the api:API class here because it is

best illustrated, and will be shown through a detailed example in the next section.

The HTTP request pattern that an endpoint accepts is encoded in its

api:uriTemplate field, and specification for selecting resources is encoded in

terms of api:select, api:where, api:orderBy, etc.

Once implemented as a software package, this API enables Linked Data publishers

or proxy builders to create their RESTful service by writing a configuration file con-

taining only the definition of an api:API instance. The api:API instance is recog-

nized upon invocation of the HTTP request, and the RESTful service backed by the

3 Linked Data API Specification. https://code.google.com/p/linked-data-api/wiki/Specification
4 The full ontology is online at http://purl.org/linked-data/api/vocab#

software performs the translation and rendering jobs according to the api:API in-

stance definition. We will show in the next section how we define this instance along

with one of its associated endpoints and the endpoint’s selector to create our RESTful

service for the R2R dataset.

Configuration of the RESTful Service. Figure 2 shows how the api:API instance

is defined in our application. It talks to the SPARQL endpoint located at

http://data.rvdata.us/sparql, as its api:sparqlEndpoint value indicates.

Here we just show one Linked Data API endpoint of this instance, namely

spec:listVesselsByLabelContains. This endpoint is responsible for listing all

the resources in the dataset that have a certain substring in their rdfs:label fields.

Fig. 2. Part of R2R Linked Data API Configuration.

In addition to the prefixes used in Figure 1, we have:

spec: http://r2r.tw.rpi.edu/spec/r2r#

The spec:listVesselsByLabelContains endpoint deals with HTTP requests

matching the pattern base:/vessels?labelContains={text}, as its

api:uriTemplate field indicates. The base prefix is the api:base value of the

spec:api, so this endpoint responds to requests such as

http://r2r.tw.rpi.edu/standalone/r2r/vessels?labelContains=Atlantis.

This endpoint uses a selector to fulfill its duty in a way that is encoded as api:where

and api:orderBy values. These values are simply the WHERE clause and the ORDER

BY clause in a SPARQL query. The actual query submitted to the SPARQL endpoint

is as follows.

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

SELECT DISTINCT ?item

WHERE { ?item rdf:type <http://data.rvdata.us/vocab/id/class/Vessel> .

 ?item rdfs:label ?label .

 FILTER regex(str(?label) , "Atlantis" , 'i') } ORDER BY ?label

The endpoint received a result for this SPARQL query, and creates a view with the

api:labelledDescribeViewer, as indicated by the api:defaultViewer value of

the spec:api. The viewer returns the graph created from a DESCRIBE query for

each query result, supplemented by labels for linked resources. The final Web page

rendered by Elda
5
, which is one implementation of the Linked Data API, is shown in

Figure 3.

Fig. 3. HTML response to the HTTP request base:/vessels?labelContains=Atlantis

Conclusion. The Elda approach for creating RESTful services enables Semantic Web

engineers to reach a broad community of Web developers. It requires minimal coding

to write a configuration file in Turtle (or other RDF formats) and expose a triple store

in a RESTful way, thus enabling construction and maintenance of a Linked Data-

driven Web portal in a lightweight manner.

Acknowledgements. This research is funded by the U.S. National Science Founda-

tion via the Rolling Deck to Repository (R2R) program and the Ocean Data Interop-

erability Platform (ODIP), working collaboratively with the U.S. University-National

Oceanographic Laboratory System (UNOLS) Office.

References
1. Christian Bizer, Tom Heath and Tim Berners-Lee. Linked Data - The Story So

Far. International Journal on Semantic Web and Information Systems 5.3 (2009): 1-22.

2. Leonard Richardson and Sam Ruby. RESTful Web Services, O'Reilly, ISBN 978-0-596-

52926-0 (2007).

3. Pat Hayes, Thomas C. Eskridge, Mala Mehrotra, Dmitri Bobrovnikoff, Thomas

Reichherzer, and Raul Saavedra. COE: Tools for Collaborative Ontology Development

and Reuse. Knowledge Capture Conference (KCAP) (2005).

5 Elda: the linked-data API in Java. http://www.epimorphics.com/web/tools/elda.html

http://oreilly.com/catalog/9780596529260
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/978-0-596-52926-0
http://en.wikipedia.org/wiki/Special:BookSources/978-0-596-52926-0

