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Abstract. In many applications (like social or sensor networks) the in-
formation generated can be represented as a continuous stream of RDF
items, where each item describes an application event (social network
post, sensor measurement, etc). In this paper we focus on compressing
RDF streams. In particular, we propose an approach for lossless RDF
stream compression, named RDSZ (RDF Differential Stream compressor
based on Zlib). This approach takes advantage of the structural similar-
ities among items in a stream by combining a differential item encoding
mechanism with the general purpose stream compressor Zlib. Empirical
evaluation using several RDF stream datasets shows that this combi-
nation produces gains in compression ratios with respect to using Zlib
alone.

Keywords: #eswc2014Garcia

1 Introduction

The popularization of streaming data on the Web has fostered the interest of the
Semantic Web community on this kind of data. Some evidences of this interest
are, for instance, proposals like C-SPARQL [4] or SPARQLStream [5], which aim
to define query languages for RDF streams, work like [13], centered on stream
reasoning, CQELS Cloud [9], which addresses the problem of scalable stream
processing, or Ztreamy [2], which presents a scalable middleware for stream
publishing. As a result of this interest, a W3C community group on RDF Stream
Processing3 has recently started. It is focused on defining a common model for
producing, transmitting and continuously querying RDF Streams.

Recent work, particularly CQELS Cloud [9] and Ztreamy [2] has pointed
out the importance of compression to reduce communication overheads when
transmitting RDF streams. Though the problem of RDF compression has been
previously addressed, notably by [1, 6–8, 12], these approaches are mostly cen-
tered on compressing static RDF files and datasets. As streams cannot normally
be stored in their entirety, compressing streaming data requires different tech-
niques than compressing files. In particular, it requires keeping state information

3 http://www.w3.org/community/rsp/ (January 13th, 2014)



2

class RDSZCompressor {
CONSTRUCTOR(cacheSize)

COMPRESS(RDFgraph)
data FLUSH()

}

class RDSZDecompressor {
CONSTRUCTOR(cacheSize)

RDFgraph[] DECOMPRESS(data)
}

Fig. 1: RDSZCompressor (left) and RDSZDecompressor (right) APIs.

about past data in order to compress future items in the stream, an aspect not
covered by the aforementioned approaches.

Taking this into account, in this paper we present an algorithm for lossless
RDF stream compression, named RDSZ (RDF Differential Stream compressor
based on Zlib). Our approach takes advantage of the fact that, in many cases,
RDF streams are constituted by items built automatically by software compo-
nents according to a single RDF schema (or a small set of them). Due to this,
these items have structural similarities that can be exploited by a differential
item encoding mechanism, so that new items in the stream can be represented
on the basis of the previously processed items. To take advantage of additional
redundancies, the results of this differential encoding process are later on com-
pressed using a general-purpose streaming compressor. In particular, due to its
popularity, we selected Zlib [10], which implements DEFLATE [11].

Empirical evaluation using several heterogeneous datasets shows that the
combination of differential item encoding with Zlib outperforms the usage of Zlib
alone. Despite its simplicity, our approach achieves significant improvements,
with gains around 9%-31% on the compressed size of some datasets.

The rest of this paper is organized as follows: Section 2 describes the RDSZ
algorithm. The empirical evaluation of the algorithm is reported in Section 3.
Section 4 offers a discussion on related work. Finally, Section 5 presents some
conclusions and future lines of development of this work.

2 The RDSZ algorithm

This section describes the RDSZ algorithm. Section 2.1 introduces its program-
ming interface and intended usage by applications, whereas sections 2.2 and 2.3
describe the algorithm compression and decompression stages.

2.1 Programming interface and usage

The RDSZ API, shown in Figure 1, is based on the Zlib API. When an appli-
cation needs to compress an RDF stream, it instantiates an RDSZCompressor
object. Then, it calls the other two methods in the interface. The method com-

press is called to provide the compressor with a new RDF item in the stream
to be compressed. This item may have been obtained, for instance, from a con-
tinuous CONSTRUCT query in an RDF stream processing engine. The method
receives as input a memory data structure that represents the RDF graph of
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Fig. 2: Processing blocks of RDSZ.

the item4, containing one or several triples. This RDF graph is buffered by the
RDSZ compressor. When a certain number of items have been buffered or after
a certain period of time, the application calls flush. Then, the compressor flushes
its internal buffer, processing the buffered RDF graphs and producing a binary
output ready to be sent to an output stream (for instance, a network socket).

The decompression process takes as input a buffer of binary data read from
an input stream. To decompress this data, applications should instantiate an
RDSZDecompressor object. Later on, they call the decompressmethod, providing
the binary data as input and obtaining as result a list of RDF graphs, each of
them representing an item in the RDF stream.

The RDSZ compressor and decompressor and all their methods are described
with more detail in the following sections.

2.2 Compression

The pseudocode of the RDSZ compressor is provided in Algorithm 1. The main
processing blocks of this compressor (shown in Figure 2) are:

– Differential encoder (DiffEncoder in Algorithm 1): it carries out the dif-
ferential encoding of each stream item at the input, on the basis of previously
processed items. For each input item, it produces as output an encoded item,
in a text-based format.

– Multiplexer (Mux in Figure 2): it takes as input a sequence of items (en-
coded or not) and converts it into a single string by concatenating the text
serialization of the items. A special delimiter is used to mark the limits of
each item, so that the decompressor can separate them again.

– Zlib compressor: it takes as input the string generated by the multiplexer
and compresses that string using Zlib to exploit additional redundancies.

As shown in Algorithm 1, RDSZ compresses the items in the RDF stream
in two different ways: (1) using only Zlib, and (2) using the differential encoder
followed by Zlib. Later on, when the results of both mechanisms are obtained,
the smaller option is selected. Note that, in principle, it is possible to run in par-
allel both alternative mechanisms (to take advantage of multi-core processors).
However, our current implementation does not exploit this possibility.

4 In our Python implementation, this RDF graph is an rdflib.Graph object.
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Algorithm 1 RDSZ compressor

/* Build a RDSZ compressor object */
1: function Constructor(cacheSize)
2: compressor ← ZlibCompressor()
3: mux←Multiplexer()
4: encoder ← DiffEncoder(cacheSize)
5: items← []
6: end function

/* Append an RDF item to the compressor buffer */
7: function Compress(RDFgraph)
8: items.append(RDFgraph)
9: end function

/* Flush the buffer and compress the RDF items */
10: function Flush

11: compressorCopy ← compressor /* Clone the state of the Zlib compressor */
12:
13: /* Compress the items (serialized in Turtle) only with Zlib */
14: turtleItems← serializeInTurtle(items)
15: string ← mux.multiplex(turtleItems)
16: outZlib← compressorCopy.compress(string)
17:
18: /* Compress the items with differential encoding plus Zlib */
19: encodedItems← encoder.encode(items)
20: string ← mux.multiplex(encodedItems)
21: outDiffZlib← compressor.compress(string)
22:
23: /* Clean the buffer */
24: items← []
25:
26: /* Select the best strategy (that with smaller results) */
27: if size(outZlib) ≤ size(outDiffZlib) then

28: compressor ← compressorCopy

29: return outZlib

30: else

31: return outDiffZlib

32: end if

33: end function

Of the three main processing blocks that constitute the RDSZ compressor,
the multiplexer and the Zlib compressor carry out well-known tasks: data con-
catenation (multiplexer) and standard compression using Zlib. Thus, we will
focus the rest of this section in the analysis of the differential encoder.

Algorithm 2 details the pseudocode of the differential encoder. The input
received by this encoder (line 4 in Algorithm 2) consists of a sequence of items
in an RDF stream. We will use an example to illustrate the process carried out
by this component. For instance, let us assume that the input is composed by
the items represented in Turtle in figures 3 (first item in the sequence), and 4
(second item).

The RDF items in the input are processed sequentially and separately by the
encoder. The first processing carried out with an item is to decompose it into a
triple pattern and a set of variable bindings. This process is represented by the
call to the method buildPattern in Algorithm 2 (line 9).

For the sake of brevity, we will not include here the full pseudocode of the
buildPattern method. It works in a two stage process:
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Algorithm 2 Differential encoder

/* Build a differential encoder object */
1: function Constructor(cacheSize)
2: cache← LRUCache(cacheSize)
3: end function

/* Encode a sequence of RDF items in the stream */
4: function Encode(items)
5: encodedItems← [] /* Initialize to empty list */
6: for item in items do

7:
8: /* Decompose the item into a triple pattern and variable bindings */
9: (pattern, bindings) ← buildPattern(item)
10:
11: /* Use differential encoding if possible (pattern previously processed) */
12: if pattern in cache then

13: (patternId, prevBindingsPattern) ← cache.get(pattern)
14: encodedItem← serialize(bindings, patternId, prevBindingsPattern)
15: else

16: patternId← genId(cache)
17: encodedItem← serializeInTurtle(item)
18: end if

19:
20: encodedItems.append(encodedItem) /* Append encoded item to results */
21: cache.put(pattern, (patternId, bindings)) /* Update the cache */
22:
23: end for

24: return encodedItems

25: end function

@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix wtl: <http://webtlab.it.uc3m.es/> .

wtl:_556103084 dc:date "2013-02-20T16:58:32Z";
dc:author "Wonderboy";

wtl:pageid 6227038;
wtl:title "Villeroy & Boch" .

Fig. 3: Differential encoder example: 1st in-
put item.

@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix wtl: <http://webtlab.it.uc3m.es/> .

wtl:_556103110 dc:date "2013-02-20T16:58:40Z";
dc:author "Wonderboy";

wtl:pageid 31317733;
wtl:title "2013 Women’s Cricket World Cup" .

Fig. 4: Differential encoder examples: 2nd
input item.

1. It orders the triples in the RDF graph of the item. The triples are first
ordered taking into account the Turtle serialization of the subject. Those
with the same subject are ordered on the basis of the Turtle serialization of
the property. Finally, those sharing subject and property are ordered taking
into account the Turtle serialization of the object.

2. It iterates over the ordered list of triples in the input RDF item and, for
each of these triples, replaces the subject and object by variables. It returns
as result a string, which represents the pattern obtained as an output of
the replacement process, plus a table of variable bindings, which map each
variable to its particular value in the input.

For instance, given the input RDF item shown in Figure 3, the output of
the buildPattern method consists of: (1) a string with the pattern represented
in Figure 5; and, (2) the variable bindings represented in Table 1. Note that, in
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?x0 <http://purl.org/dc/elements/1.1/author> ?x1 .
?x0 <http://purl.org/dc/elements/1.1/date> ?x2 .
?x0 <http://webtlab.it.uc3m.es/pageid> ?x3 .
?x0 <http://webtlab.it.uc3m.es/title> ?x4 .

Fig. 5: Triple pattern for RDF items in figures 3 and 4.

variable value

?x0 <http://webtlab.it.uc3m.es/ 556103084>
?x1 ”Wonderboy”
?x2 ”2013-02-20T16:58:32Z”
?x3 6227038
?x4 ”Villeroy & Boch”

Table 1: Variable bindings for RDF item
in Figure 3.

variable value

?x0 <http://webtlab.it.uc3m.es/ 556103110>
?x1 ”Wonderboy”
?x2 ”2013-02-20T16:58:40Z”
?x3 31317733
?x4 ”2013 Women’s Cricket World Cup”

Table 2: Variable bindings for RDF item
in Figure 4.

case of the RDF item shown in Figure 4, the pattern would be the same, whereas
the bindings would be those indicated in Table 2.

Once the decomposition into pattern and bindings of the input RDF item
has been obtained, the encoder needs to determine whether this item can be
represented on the basis of a previously processed item in the stream or not.

To take this decision, the encoder uses information about previously pro-
cessed items that is stored within a Least Recently Used (LRU) cache of size
cacheSize (defined in line 2 of Algorithm 2). This cache stores patterns of re-
cently processed items. For each pattern, the associated bindings and a unique
pattern identifier (an integer idx ∈ [0, cacheSize− 1]) are also stored.

Using the cache information, the encoder takes one of the following options:

(I) If the pattern of the RDF item being processed is already within the cache,
this means that another item with the same pattern has been recently
processed. Thus, the current item is encoded on the basis of the preceding
one. As both items have the same pattern, there is no need to explicitly
send all the pattern information to the decompressor again. Only the
pattern identifier will be included in the encoded item. Regarding the
bindings, the variables may have the same value both in the current and
preceding RDF item or not. If the value is the same, there is no need to
send it again. Otherwise, the value is included within the encoded item.
The result of the encoding process in this case is a string that contains a
line for the pattern identifier plus a line for each variable in the bindings.
We adopt the following conventions to serialize variable values:
– The variables are included in the order of their number. The value for

variable ?x0 will be the first, then the value for ?x1, etc. Due to this,
there is no need to include the variable name in the encoded item.

– The variable values are represented in Turtle format (URIs between
<>, string literals between quotes, etc.). Blank nodes are represented
with a single underscore (note that when several blank nodes are
present, each of them will be a different, unambiguous variable).
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1
<http://webtlab.it.uc3m.es/ 556103110>

”2013-02-20T16:58:40Z”
31317733
”2013 Women’s Cricket World Cup”

Fig. 6: Differential encoder example: results of the serialize method.

– When a variable has the same value both in the current and preceding
items, an empty line is included in the encoded item.

The process of representing the current item on the basis of a preceding
one is denoted by a call to method serialize in Algorithm 2 (line 14). As
it can be seen, this method receives as input all the required information:
the bindings of both the current item (bindings) and the preceding item
(prevBindingsPattern), and the pattern identifier (patternId).

In our particular example, the encoder uses differential encoding when
processing the second RDF item, because it has the same pattern as the
first item (see Figure 5). The result of the serialize method in this case is
shown in Figure 6, where it has been assumed, without loss of generality,
that the patternId in the cache for the pattern of this item is idx = 1. It
can also be seen the empty line used to represent that the value of ?x1
is the same for both RDF items (compare Table 1 and Table 2). Note
also that some redundancies are present in the results of serialize (for
instance, two variables share the prefix ”2013). These redundancies are
later exploited by the Zlib compressor included in RDSZ.

(II) In case the pattern of the RDF item being processed is not included within
the cache, the encodedItem variable is assigned the string serialization in
Turtle of the RDF item, without any change (line 17 in Algorithm 2).

In any case, the encodedItem is added (line 20 of Algorithm 2) to the list of
encoded items to be returned as output.

Finally, the differential encoder updates the cache, storing the information
about the RDF item just processed (line 21 of Algorithm 2). In particular, the
cache maps the pattern of the item to the associated bindings plus a pattern
identifier. The value of this identifier depends on whether the pattern was already
in the cache or not. In case the pattern was already in the cache, its previous
identifier is reused. In case the pattern was not previously in the cache, a new
identifier is generated (call to method genId on line 16 of Algorithm 2). This
method returns the index of the cache where the new entry is going to be stored.

Once all the input RDF items are processed, the result of the encoding process
(list encodedItems in Algorithm 2) is returned as output to be processed by the
next element in the compressor pipeline: the multiplexer (see Figure 2).
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Algorithm 3 RDSZ decompressor

/* Build a RDSZ decompressor object */
1: function Constructor(cacheSize)
2: decompressor ← ZlibCompressor()
3: demux← Demultiplexer()
4: decoder ← DiffDecoder(cacheSize)
5: end function

/* Decompress a buffer with binary data */
6: function Decompress(buffer)
7: string ← decompressor.decompress(buffer)
8: tokens← demux.demultiplex(string)
9: decodedItems← decoder.decode(tokens)
10: return decodedItems

11: end function

2.3 Decompression

The pseudocode of the RDSZ decompressor is provided in Algorithm 3. It con-
sists of a set of blocks (see Figure 2) that carry out the inverse processes of their
compressor counterparts:

– Zlib decompressor: it takes as input binary data in a buffer and decom-
presses it using Zlib, obtaining a string.

– Demultiplexer (Demux in Figure 2): it splits the string generated by the
decompressor into a sequence of tokens (each of them representing an RDF
item, encoded or not). To do so, it uses the same delimiter defined in the
compressor multiplexer.

– Differential decoder (DiffDecoder in Algorithm 3): gets the tokens from
the demultiplexer and decodes the items that have been encoded at compres-
sion time, returning as result a list of RDF graphs, each of them representing
an item in the stream.

The rest of this section will be focused on the RDSZ differential decoder, as
the processes of the other two components are well-known. The pseudocode of
this decoder is shown in Algorithm 4. It processes the tokens provided by the
demultiplexer one by one. For each token it carries out the following tasks:

(I) The tokens at the input can represent an encoded item (like the one de-
picted in Figure 6) or an unencoded one (that is, a Turtle serialization of
the RDF item as shown for instance in Figure 3). The decoder differenti-
ates between these cases by checking the first line of the token, which can
be an integer (the patternId of an encoded item) or not (unencoded item).

(a) In case the token represents an encoded item, it is decoded. To do so:

i. The decoder reads the patternId from the first line of the input
token (line 10 in Algorithm 4).

ii. It uses its internal state (a LRU cache with the same information
as the encoder cache at the compressor) to obtain the pattern and
bindings associated to the patternId (line 11 in Algorithm 4).
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Algorithm 4 Differential decoder

/* Build a differential decoder object */
1: function Constructor(cacheSize)
2: cache← LRUCache(cacheSize)
3: end function

/* Decode a sequence of tokens from the demultiplexer */
4: function Decode(tokens)
5: decodedItems← [] /* Initialize to empty list */
6: for token in tokens do

7:
8: /* Check if the token is really encoded or not */
9: if token is encoded then

10: patternId← token.readFirstLine()
11: (pattern, prevBindingsPattern) ← cache.searchID(patternId)
12: decodedItem← deserialize(pattern, token, prevBindingsPattern)
13: else

14: decodedItem← deserializeFromTurtle(token)
15: end if

16:
17: decodedItems.append(decodedItem) /* Append decoded item to results */
18:
19: /* Update the cache to keep it in sync with the compressor */
20: (pattern, bindings) ← buildPattern(decodedItem)
21: if pattern in cache then

22: patternId← cache.get(pattern)
23: else

24: patternId← genId(cache)
25: end if

26: cache.put(pattern, (patternId, bindings))
27:
28: end for

29: return decodedItems

30: end function

iii. It reconstructs the original set of triples in the RDF item (call
to deserialize in line 12 of Algorithm 4) and stores the results in
the decodedItem variable. Note that using the differential encod-
ing process does not introduce any RDF information loss, as the
original item triples are reconstructed at the receiver.

In our particular example, if the token contains the encoded represen-
tation of the second input item, shown in Figure 6, the decoder:

i. Reads the pattern identifier (idx = 1) from the first line.
ii. Obtains from the cache the pattern for that identifier (pattern in

Figure 5) as well as the associated bindings (that will be those of
the preceding item with the same pattern, that is, the bindings of
the first item, shown in Table 1).

iii. With the bindings of the first item and the contents of the token,
the bindings of the second item (Table 2) can be obtained. Then,
a variable replacement process over the pattern serves to obtain
the triples of the second item and, from them, its RDF graph.

(b) If the token represents an unencoded item, the decodedItem variable
is assigned the RDF graph obtained by deserializing the Turtle rep-
resentation of the RDF item (line 14 in Algorithm 4). Obviously, as
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the original item is received in this case, no information loss has been
introduced by RDSZ.

(II) Once the decodedItem has been obtained, it is added to a list of de-

codedItems to be returned as result (line 17 in Algorithm 4).
(III) The decoder cache is updated (lines 20 to 26 in Algorithm 4), to keep it

in sync with its counterpart at the encoder. In order to do so, the decoder
carries out the same processing as is done in the encoder.

Once all the input tokens are processed, the result of the decoding process
(decodedItems in Algorithm 4) is returned as output of the decompression pro-
cess.

3 Evaluation

We implemented a first prototype of the RDSZ algorithm using Python 2.7.3 and
RDFLib 4.0.15. We used this prototype to validate empirically our approach, cen-
tering our evaluation in two aspects: compression performance, and processing
time.

Next sections describe the datasets used in our experiments (Section 3.1), as
well as the results of our analysis regarding both the compression performance
(Section 3.2) and processing time (Section 3.3).

3.1 Datasets

RDSZ uses differential item encoding, which depends on the item structure.
Hence we are interested in evaluating the algorithm using several different da-
tasets with different item schemas. Table 3 describes the datasets used in the
experimental evaluation6, including name, size in bytes, number of RDF items it
contains, size in triples, and average size of an item in triples (Avg.). We also in-
clude in the last column the number of different structural patterns found in the
dataset when running RDSZ, which is related with the possibility (or not) of us-
ing differential encoding when compressing the dataset. Note that this should be
a number between one (every item has the same pattern) and the total number
of items in the dataset (every item has a unique pattern).

The datasets AEMET1 and AEMET2 represent, using different schemas, in-
formation taken from wheather stations in Spain [3]. They were obtained from
the Spanish Meteorological Office (AEMET). The dataset Identica represents in
RDF the messages in the public streamline of the microblogging site Identica7

on a several day time frame. The dataset Wikipedia was obtained by monitoring
every 30 seconds for a period of several hours the edits carried out on the En-
glish Wikipedia, and representing in RDF information about these edits (page,

5 https://github.com/RDFLib (January 13th, 2014)
6 Available for download at: http://www.it.uc3m.es/berto/RDSZ/
7 http://identi.ca/ (January 13th, 2014)
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Name Size (bytes) #Items #Triples Avg. #Patterns

AEMET1 34,344,498 33,095 1,018,815 30.78 1,459

AEMET2 263,640,938 398,347 2,788,429 7 2

Identica 17,559,385 25,749 256,699 9.97 104

Wikipedia 14,994,109 2,004 359,028 179.16 2,004

Petrol 324,265,505 419,577 3,356,616 8 1

LOD 27,621,020 25,906 258,533 9.98 5

Mix 5,327,406 5,000 93,048 18.61 371

Table 3: Description of the experimental datasets.

timestamp, etc). The Petrol dataset was provided by the Spanish start-up Local-
idata8, and provides metadata about credit card transactions in petrol stations.
The LOD dataset represents sensor observations of different wheather parame-
ters. It was extracted from the Linked Observation Data9 dataset. Finally, the
Mix dataset was generated by randomly combining items from the other data-
sets, so that each dataset has the same probability to contribute an item.

3.2 Compression performance

The compression performance of RDSZ depends on several parameters. First,
the structure of the items in the stream, that is, the dataset schema, has an
impact on the differential encoding process. Second, the results of RDSZ depend
on the size of the pattern cache (cacheSize). Third, the performance depends
also on how items in the stream are grouped to be processed by the compressor,
that is, in how many calls to compress are made between two successive calls to
flush, according to the interface shown in Section 2.1. We name this parameter as
batchSize. The reason for this dependency is that each time the Zlib compressor
processes a batch of items, it inserts specific information (in particular, related
to Huffman coding) to be sent to the decompressor. Increasing the batchSize

(that is, compressing larger groups) reduces the total number of item batches to
be processed and, thus, reduces the Zlib (and hence RDSZ) overhead.

We first analyze the impact of the dataset on the compression performance.
To do so, we run RDSZ in the different datasets assuming a fixed batchSize of 5
items and a cacheSize of 100 entries. For comparison purposes, we use as baseline
the results achieved when the differential encoding process is not used, that is
when the items are just serialized (using either RDF/XML, Turtle, NTriples or
JSON-LD), multiplexed and compressed with Zlib. Table 4 shows the compressed
size in bytes for each approach. The last column indicates the percentage of gain
provided by RDSZ with respect to the best performing reference.

According to the results in Table 4, the best performing reference in all the
datasets is that where Turtle serialization is used. RDSZ outperforms this refer-
ence in all but one of the datasets (Wikipedia). Note that, taking into account

8 http://www.localidata.com/ (January 13th, 2014)
9 http://wiki.knoesis.org/index.php/LinkedSensorData (January 13th, 2014)
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Dataset
Zlib baseline (No differential encoding)

RDSZ RDSZ
XML Turtle N-Triples JSON-LD

size (bytes) size (bytes) size (bytes) size (bytes) size (bytes) Gain

AEMET1 4,325,202 2,299,308 5,552,972 3,051,049 1,876,624 18.38%

AEMET2 12,854,321 8,120,614 16,930,673 9,432,218 5,633,763 30.62%

Identica 3,335,047 2,604,441 3,569,338 3,078,349 2,266,868 12.96%

Wikipedia 3,017,381 2,466,633 3,450,287 2,821,515 2,466,633 0%

Petrol 29,370,624 23,594,420 34,368,532 25,689,604 19,806,835 16.05%

LOD 1,230,708 784,298 1,652,188 1,056,188 537,646 31.45%

Mix 889,410 665,786 1,019,060 804,721 599,775 9.91%

Table 4: Analysis of the compression performance of RDSZ on the different
datasets.

the information shown in Table 3, this is an expected result, because in the
Wikipedia dataset all the items have a different pattern and, thus, RDSZ does
not take any advantage from using differential encoding.

To evaluate the impact of the batchSize and cacheSize we ran several ex-
periments on the AEMET1 dataset with the following setup: (1) the cacheSize

parameter varied from 32 to 2048 on a power of two basis; and (2) the batch-

Size was modelled using a Poisson random process, to simulate the scenario of
an application that produces stream items (and calls compress) according to a
Poisson traffic model and calls flush periodically. Figure 7 reports the results for
the Turtle baseline and RDSZ when the average of the batchSize process was
set to 2, 5 and 10 items. Due to the random nature of the Poisson process, the
experiment was repeated for each pair {cacheSize, batchSize} to compute the
average of the compressed size and its 95% confidence interval. The average val-
ues (in Kilobytes) are reported in Figure 7. The confidence intervals were found
to be very small (with a maximum error of less than 3KB) and, thus, were not
represented to ease visualization. Note that we have also included as reference in
Figure 7 the results when the cacheSize is 0, where RDSZ matches the baseline.

As shown in Figure 7, increasing the cacheSize benefits performance. Fur-
thermore, as expected, increasing the batchSize has a positive impact for both
RDSZ and the baseline (as both of them use Zlib). Thus, it may seem that a
possibility to improve compression performace is simply to increase the batch-

Size arbitrarily. However, this affects the delay perceived when transmiting the
stream over a communication line, since larger batches require waiting for more
items to be available at the compressor. Thus, the tradeoff batchSize versus delay
needs to be considered for each particular application. For instance, applications
with no real-time restrictions may wait to buffer a large number of items (large
batchSize) before calling flush, whereas applications with real-time restrictions
may prefer to call flush periodically with a small period to limit the delay, even
if the batchSize to be processed at each period is small.
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Fig. 7: Evaluating the impact of the cacheSize and batchSize parameters on the
compression performance.

3.3 Processing time

We are interested in measuring the average processing time per item of our
current implementation of RDSZ, as this time has an impact in the throughput
that can be achieved with our stream compressor. Furthermore, as in Section 3.2,
we are also interested in analyzing the influence of the dataset, the batchSize and
the cacheSize into this processing time. To do so, we run our experiments in an
Ubuntu 12.04 laptop with an Intel Core2 Duo, 2.53GHz CPU and 8GB RAM.

First, we measure the average compression and decompression time per item
in the different datasets, assuming a constant batchSize of 5 items and cacheSize

of 100 entries. The results for RDSZ and the baseline that uses Turtle serializa-
tion (the best according to results in Table 4) are reported in Table 5 (measured
in milliseconds). The last column in this table shows the ratio obtained by divid-
ing the total (compression plus decompression) average processing time per item
of RDSZ by that of the baseline. As indicated in Table 5, the processing time of
RDSZ is worse than that of the baseline, as expected, due to the extra process-
ing introduced by RDSZ, and the fact that we are evaluating an unoptimized
prototype.

Second, we are also interested in analyzing how the total average processing
time per item of our RDSZ prototype depends on the average number of triples
per item. To do so, we fitted a linear model between these two variables as
measured in all the datasets. This resulted in a line with slope α = 1.08604 and
Intercept = −1.55013. The high R2 = 0.9984 and low p−value = 2.372e−08 of
the fitted linear model indicate that it explains adequately the relation between
the variables, which suggests that the processing time per item is proportional
to the number of triples per item for the datasets considered.

Finally, we followed the same experimental setup as in Section 3.2 to evaluate
the impact of the batchSize and cacheSize parameters in the processing time.
However, in this case we have not found any significant dependency with these
parameters. In particular, running the experiments with different batchSize and
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Dataset
No differential encoding (Turtle) RDSZ

RatioCompre. time Decompre. time Compre. time Decompre. time
per item (ms) per item (ms) per item (ms) per item (ms)

AEMET1 5.58 5.30 9.81 17.08 2.47

AEMET2 1.75 1.87 2.33 5.57 2.18

Identica 2.27 2.02 3.07 6.57 2.25

Wikipedia 38.05 33.48 101.48 92.29 2.71

Petrol 2.09 2.05 2.77 6.00 2.12

LOD 2.69 2.70 3.51 7.82 2.10

Mix 3.71 3.48 6.72 10.03 2.37

Table 5: Analysis of the processing time of RDSZ.

cacheSize values, the maximum difference between the total average processing
time per item measured between any two runs was less than 1 millisecond.

4 Related work

RDF compression has been only widely addressed recently. One early reference
on this topic is [6], where different compression approaches are tested, includ-
ing: (1) use of general purpose algorithms and (2) definition of compact RDF
representations that are later compressed. The conclusions of this work suggest
that RDF is highly compressible, especially with compact RDF representations.

In [7] the authors present a compact binary RDF representation, named
HDT, that consists of three elements: a header, a dictionary of symbols and
the triples encoded according to the dictionary. This structure can be later com-
pressed using Huffman coding and predictive high-order compression techniques,
and the result, according to the authors, outperforms universal compressors.

Another relevant work is [1], which describes a compact RDF structure (k2-
triples) that allows SPARQL queries to be performed on the compressed repre-
sentation and, thus, can be used to implement in-memory RDF indexes.

A logical approach to lossless RDF dataset compression is presented in [8].
It consists on automatically building a set of inference rules from the dataset
to be compressed and removing all the triples that can be inferred using these
rules. The remaining triples plus the inference rules constitute the compressed
representation of the original dataset.

The topic of scalable compression of large RDF datasets is addressed in [12],
where the authors present a parallel RDF data compression approach based on
dictionary encoding techniques and MapReduce.

All of the aforementioned approaches are centered on the compression of
large, static, RDF datasets. Compared to that work, the main contribution of
this paper is the definition of a lossless compression algorithm for RDF streams.

The topic of RDF stream compression has been indirectly covered in CQELS
Cloud [9] and Ztreamy [2]. These references stress the importance of compression
for scalable transmission of RDF streams over the network. They also suggest
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potential approaches to deal with this issue: dictionary encoding in [9], and Zlib
in [2]. However, compression is not the central topic of these papers, and they
do not provide an exhaustive analysis of these approaches.

5 Conclusions and future lines

In this paper we presented the RDSZ algorithm for lossless RDF stream com-
pression. It allows to reduce the communication overheads when transmitting
RDF streams. The algorithm is based on the combination of a differential item
encoding mechanism, which takes advantage of the structural similarities be-
tween items in the stream, with the general purpose stream compressor Zlib, to
take advantage of additional redundancies. The approach was implemented and
evaluated using several heterogeneous RDF stream datasets. The results of this
evaluation indicate that the combination in RDSZ of differential item encoding
and Zlib produces gains in compression ratios with respect to using Zlib alone.

The current version of RDSZ is not designed to allow querying the compressed
RDF stream without decompressing it beforehand. Addressing this issue and
integrating our approach into an RDF stream processing engine could represent
potential future lines of development of the work presented in this paper.
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