
How to Best Find a Partner?
An Evaluation of Editing Approaches to

Construct R2RML Mappings ?

Christoph Pinkel1, Carsten Binnig2, Peter Haase1,
Clemens Martin2, Kunal Sengupta3, and Johannes Trame1

1 fluid Operations AG, Walldorf, Germany
2 Baden-Wuerttemberg Cooperative State University, Mannheim, Germany

3 Wright State University, Dayton OH, USA

Abstract. R2RML defines a language to express mappings from rela-
tional data to RDF. That way, applications built on top of the W3C
Semantic Technology stack can seamlessly integrate relational data. A
major obstacle to using R2RML, though, is the effort for manually cu-
rating the mappings. In particular in scenarios that aim to map data
from huge and complex relational schemata (e.g., [5]) to more abstract
ontologies efficient ways to support the mapping creation are needed.
In previous work we presented a mapping editor that aims to reduce the
human effort in mapping creation [12]. While assisting users in mapping
construction the editor imposed a fixed editing approach, which turned
out to be not optimal for all users and all kinds of mapping tasks. Most
prominently, it is unclear on which of the two data models users should
best start with the mapping construction.
In this paper, we present the results of a comprehensive user study
that evaluates different alternative editing approaches for constructing
R2RML mapping rules. The study measures the efficiency and quality of
mapping construction to find out which approach works better for users
with different background knowledge and for different types of tasks.

Keywords: #eswc2014Pinkel

1 Introduction

Motivation: The RDB to RDF Mapping Language (R2RML4) has recently be-
come a W3C standard for creating mappings from relational databases to RDF.
This enables many semantic web applications to integrate easily with relational
databases. Although very useful, we observe certain problems with the adoption
of R2RML: (1) creating R2RML rules manually is a time consuming process,
(2) even simple rules can be syntactically heavy in terms of the R2RML vocab-
ulary, and (3) a steep learning curve is involved in gaining expertise of this new

? This work was supported by the 7th Framework Program of the EU Commission
under grant agreement 318338 and by the US NSF under award 1017225.

4 http://www.w3.org/TR/r2rml/

?
Songs

Recording

Genre

Track

title

…

…

genre

Sound

publication_of

recorded_in

ID

Literal
label

genre

…

Fig. 1: Example Mapping Task (Left: Ontology, Right: Relational Schema)

language. All these issues essentially result in a high manual effort. In scenarios
where data is mapped from huge and complex relational schemata to RDF, the
manual effort is particularly high. In previous work [12] we demonstrated the
initial version of an R2RML editor that aims to reduce the manual effort.

Problem Statement: The amount of effort that users invest for writing
mapping rules depends on the mapping creation process. The usefulness of an
editor therefore depends on how well it supports users in this process. Is the
editing approach aligned with user expectations? Does the editor direct users in
some specific direction and, if so, is this direction helpful? Or could users choose
between procedural alternatives at their own discretion? Our editor initially
imposed a strict editing approach, which turned out to be not optimal for many
users and mapping tasks.

R2RML as a language, on the other side, leaves users a lot of of freedom
about the order in which they compile different parts of a mapping rule. For
example, you could start by first defining the RDF target of a mapping rule or
you could start by selecting source tables from a relational database. R2RML
also leaves it to the user whether to compose a separate rule for each mapping
or to group many associated mappings into the same mapping rule.

Though there is a number of different approaches that a user may follow,
two particular alternatives stand out: (1) the database-driven mapping approach
where users work through the relational schema table by table and write mapping
rules for all data in the tables that they find useful and (2) the ontology-driven
mapping approach where users browse schematic aspects in an existing ontology
(such as classes and properties) and then write mapping rules to add appropriate
A-Box facts from the database. Essentially, these approaches start at opposite
ends of a mapping. To build an efficient R2RML mapping editor we need to
know which approach works better under which circumstances.

Example: Figure 1 depicts a mapping problem where instances of type Track
should be constructed based on data in the table Songs of a relational database.
Though both models describe the genre of a track, the genre is only indirectly
connected to the Track class but directly connected to the Songs table.

Imagine a user trying to map the Song table to instances of type Track of
the ontology, approaching the task from the database side: the user would start
with exploring the table Song, easily identify the ID and the title attributes to
construct the URIs for the Track instances and their labels. However, the user
could have a hard time finding a mapping partner for the genre attribute of the
table Songs in the ontology. In fact, what the user will have to do is (1) browse

the ontology to find the corresponding partner (class Genre), (2) write a new
R2RML rule to construct instances of class Genre in the ontology and (3) see
how to construct triples all required triples to connect Track and Genre. This
can prove to be a difficult task for a user. In this particular case, the opposite
direction would appear more appealing.

Contributions: In this paper, we present the results of a comprehensive
user study that evaluates different alternative editing approaches to support the
construction of R2RML mapping rules in our editor. We therefore extended the
mapping editor to support different approaches.

We put our main focus on the ontology-driven and database-driven ap-
proaches. Consequently, one hypothesis that we tested in our user study is that
both approaches accommodate the preferences of users with a different back-
ground knowledge. For example, database experts might prefer to proceed dif-
ferently than ontology experts. In another hypothesis, we assumed that either
mapping approach offers different advantages and disadvantages for different
mapping tasks. For example, for a mapping task where a small ontology requires
only a few facts out of a huge database, the ontology-driven approach might
generally appear more reasonable.

Outline: The remainder of this paper is organized as follows: Section 2 dis-
cusses different approaches implied by R2RML for constructing mapping rules.
Section 3 presents the existing R2RML editor that we have extended for this
study. In Section 4, we present the design of our study along a set of key ques-
tions and discuss the results of the study. Section 5 describes related work. We
conclude and discuss possible future work in Section 6.

2 R2RML Editing Approaches

R2RML as a language leaves the user much freedom about how to compose
mapping rules. However, logical dependencies in many cases suggest a natural
order of steps for writing rules.

2.1 Implied Editing Approaches in R2RML

Figure 2 shows the basic structure of R2RML mapping rules. Mapping rules are

PredicateObjectMapSubjectMapLogicalTable

TriplesMap

PredicateMap ObjectMap

mapping source definition mapping target definition

Subj ObjPred

Fig. 2: Main Aspects of R2RML Mapping Rules

called triples maps. Each triples map consists of (1) a logical table, which defines
a view on the source database, (2) a subject map, which defines target instance
URIs and types, and (3) any number of predicate/object maps, adding triples to
those instances.

For example, if you wish to add a mapping for songs and their titles from
a table Songs to an ontology class Track, you might write a mapping rule with
the following components: (1) a logical table that builds a view on table Songs,
(2) a subject map that constructs a unique URI for each song tuple and types it
as a Track and (3) one predicate/object map with predicate dc:title and object
literals constructed from the title attribute in table Songs.

You may generally add those parts in any order. In the following we describe
the choices a user can make based on R2RML as a language.

Mapping Direction: Most importantly, users may start by defining the
logical table or by defining the subject map, i.e., they might:

1. Proceed database-driven by defining views over the source database.
2. Proceed ontology-driven by first specifying ontology classes.

Both approaches imply a different kind of thinking. Users can either think of
existing database tables or of the target ontology and required information.

Subject Map Definition: Any triple depends on its subject, which is de-
fined in a subject map. It would thus sound natural to specify the subject map
before any predicate/object maps are defined. However, you may also consider
the subject as implicitly given and specify it later.

Predicate/Object Map Definition: Predicate/object maps each contain
a predicate map and an object map. The obvious order here is to first specify
the predicate then the object but the other way around is also possible.

Predicate/Object Map Separation: The fact that each mapping rule can
have only one subject map but any number of predicate/object maps suggests
that as many predicate/object maps as possible should be added to the same rule.
However, different properties may rely on different parts of the source database.
Therefore, this assumption adds potentially heavy requirements on the source
database view, i.e., on the logical table of the mapping rule. Depending on the
required views this may be or may not be adequate in practice. Hence, in cases
where the views would become too complex it can make sense to construct
different mapping rules for each predicate/object map. Each of those rules would
then reference the same subject map but a different logical table.

Incremental Rule Extensions: Finally, mapping rules may undergo many
iterations, especially when working with complex data. For example, predi-
cate/object maps may be added. Also, logical tables might be adjusted to cover
a wider selection of data. The second case is particularly interesting. It basically
represents the opposite strategy of predicate separation: add another rule for
a new predicate or extend the logical table? Also, in some cases it may have
implications on the correctness of previously added parts of a mapping.

2.2 Supported Approaches in R2RML Editors

Editors, while assisting users in various ways, may also restrict their freedom by
forcing them to work with one specific approach.

In our search for the best approach we focus on mapping direction, i.e., on
the choice between the database driven and ontology driven approach.

Handling subject definition is easy with editors as they can always construct
a subject automatically. Users may later change these subject maps but there is
no good reason to force them to edit subject maps at one specific point in time.

Predicate/object map definition plays no role in editors because a single dia-
log would be used to associate both. Therefore, users are always free to proceed
either way. Predicate separation, i.e., the choice to construct several smaller
rules instead of one single large rule may or may not be supported by editors.
Similarly, incremental build-up may or may not be supported.

3 The R2RML Mapping Editor

In this paper, we use our R2RML editor [12] as a basis. For the purpose of the
study we extended our editor to support different editing approaches. In the
following, we first describe the original editor and then discuss our extensions.

3.1 Basic Editor (Original Version)

In terms of individual features the editor provides a user interface that hides the
R2RML vocabulary details, allows an easy access to schema meta-data of the
relational database for which the mappings are to be created and gives feedback
at each step, such as previewing triples. The original workflow supported by the
editor follows a strict step-by-step pattern which can be described as follows:
1. Datasource & Base URI Selection: The user chooses data sources (i.e.,

databases and ontologies) to work with.
2. R2RML Rule Selection: At this point the user may choose to edit an

existing rule or add a new one.
3. Logical Table Selection: Logical tables in R2RML are either database

tables, existing views or custom SQL queries establishing an ad-hoc view.
Consequently, the user can choose an existing table or view or write a query.

4. Subject Map Creation: The original version of the editor requires the user
to define in detail how subject URIs are generated, usually using a template.
An rdf:type can optionally be assigned.

5. Predicate/Object Maps Creation: Finally, for the selected subject any
number of predicates and objects can be added. The editor offers the full
expressiveness of R2RML predicate/object maps including advanced options.

6. Textual Representation: Finally, a summary is displayed. It is still pos-
sible to step back from this point in order to modify the rule.

3.2 Extensions and Modifications

While following the most obvious approach for creating mapping rules in R2RML,
the original version of the editor showed little flexibility to deviate from this one

Fig. 3: A Mapping Rule in the Editor

approach that we required to test different hypotheses that we will explain in
detail in Section 4.

To overcome those limitations, we modified the editor so that the user was
free to construct mapping rules in almost any order. To this end, switching from
one step to another is now possible by simply clicking the “Edit” button in the
relevant part of the rule. When a user does so, a summary of all other parts of the
rule still remains visible, so it is always possible to cross-check for implications
of changes with those other parts at a glance. Finally, wherever possible, we also
hid complex and rarely used language features behind an “Advanced” button, so
that for most regular tasks the UI would not be obfuscated with a large number
of extra knobs and options.

Before these changes users could not browse away from any wizard step (say,
the predicate/object step) to explore relevant ontology or database aspects. It
was neither possible to start exploring the ontology or database and then directly
add a mapping rule for a relevant aspect just found. Instead, the users always
had to get back to the editor’s start page, add all mapping details in the expected
order and manually enter every detail they found while exploring when requested.

Figure 3 depicts a rule in the new version of the editor where a predi-
cate/object map is currently being edited while the summary of both the logical
table and subject map are still visible.

Furthermore, we coupled the editor with ontology and database exploration:
users can now add new mapping rules right from viewing the details of an on-
tology class, predicate, database table or column. If they do so, the rule will
be initialized from the context, e.g., by automatically adding a logical table or
rdf:type to the newly generated rule. This offers different entry points for adding
rules and thus supports different editing approaches.

3.3 Semi Automatic Match Suggestions

Besides general UI support and preview capabilities that form the main parts of
our editor, another popular method for supporting users in editing mappings are
suggestions. Those can come, for instance, in the shape of code auto-completion
while editing rules or, more specifically in form of match suggestions.

As mapping rules are logically build on matches (or correspondences) between
aspects in the relational schema and the ontology, respectively, such suggestions

carry high potential in reducing the amount of work that users will have to
invest to identify and name the corresponding aspects while writing rules. While
suggestion quality is a key factor in the usefulness during mapping creation in
general, the question how matches are created is orthogonal to our work since it
can be carried out in a pre-processing step.

For this reason we extend the editor with an optional semi automatic sug-
gestion mechanism that can be turned on and off for evaluation to study its
impact. In our paper, we use the IncMap system [7] to generate suggestions in
both directions (i.e., from database to ontology and vice versa).

4 User Study

We have designed our user study to shed light on the following key questions
with regard to the hypothesis mentioned in Section 1:
1. How suitable are different editing approaches when creating mapping rules

in general (i.e., starting with for browsing the ontology or the database?
Hypothesis: In the general case, none of the main approaches outperforms
the other.

2. Is some approach more suitable for users with a different background (i.e.,
different levels of expertise, background in databases vs. semantics technolo-
gies)? Hypothesis: The background of the user influences results.

3. Is there a approach that works better for different task types? Hypothesis:
Task characteristics will have influence on which approach works better.

4. How much can be gained when providing mapping suggestions resulting from
using semi-automatic matching tools for the different editing approaches?
Does some approach gain more than others and could thus be more suit-
able whenever high-quality suggestions are available? Hypothesis: In general
mapping suggestions will help users when constructing complex mapping
rules (i.e., no one-to-one mappings). Since complex mapping rules in R2RML
are only supported by constructing a SQL join query, we believe that the
ontology-driven approach will benefit more since then SQL queries with joins
can be suggested as a logical table which maps to a prior selected class of
the ontology. The other way round complex mappings are only supported by
constructing multiple rules (i.e., one for each artifact of an ontology).

4.1 Task Definitions

We have built our user study around the MusicBrainz database5 and the Mu-
sic Ontology [9]. This scenario is particularly appealing because some domain
knowledge can then be taken for granted with any study participant without
teaching her the basic classes and properties. Moreover, a series of hand-crafted
mappings provided by the EUCLID project6 already existed. We used those
mappings as a basis to define relevant and realistic mapping tasks for the user

5 http://musicbrainz.org/doc/MusicBrainz Database/Schema
6 http://www.euclid-project.eu

study and to make sure that our expectations towards the mapping semantics
were reasonable.

For the study, we have defined three tasks around different concepts of the
Music Ontology (i.e., artists, recordings, and tracks). Each task includes a similar
number of rules that need be created whereas the rules cover different elements of
the ontology (i.e., instances of classes and properties). Moreover, we have created
the tasks such that each task comes with challenges of different complexity (e.g.,
defining SQL queries with and without joins for the mappings).

The high-level description of the three tasks of the user study is as follows:
1. Artists: We need to get some information about artists listed in the database:

We need at least to be able to identify them uniquely as artists (typed) and
know their names.

2. Recordings: We need to know about recordings listed in the database. At
least, we need to have them uniquely identified and typed, and we also need
to know their duration.

3. Tracks: We need to know about tracks listed in the database. At least, we
need to have them uniquely identified and typed and we also need to know
their position on the album.
We split each task in two steps: (1) The first step consisted of constructing a

basic mapping between a source logical table and a target ontology class whereas
the logical table had to be constructed by either choosing a plain table or writing
a SQL query for joining multiple tables. (2) In the second step the user always
had to add a predicate/object map in R2RML to map some attributes of a table
to an appropriate ontology property. Table 1 lists all individual tasks of the user
study, explains the two steps per task and discusses the associated problems that
users had to solve in order to successfully complete the step.

4.2 Setup and Participants

To run the study, we extended the R2RML mapping editor [12] as described
in Section 3 and provided a web front-end wrapping for the mapping editor
in a specifically designed shell for the user study. Besides embedding the map-
ping editor and associated exploration and visualization features, the shell also
implemented a questionnaire and a wizard-style series of briefing steps to pre-
pare participants for the task. The editor implements the ontology approach as
ONTO mode and the database approach as DB mode. For providing mapping
suggestions, we used the IncMap system demonstrated in [8].

Participants could openly access the web front-end from the internet. Each
participant was assigned an isolated study slot. Within each slot (i.e., for each
participant) the user interface was restricted to provide only the functionality
required for the part of the study to which the participant has progressed.

We recruited participants different technical background (general computer
science, databases, Semantic Web) and experience (professionals and computer
science students). Among those asked to participate were data integration pro-
fessionals, colleagues and Semantic Web experts, as well as a group of second
year computer science students.

Task Step# Short Description Challenge/Non-trivial Aspects

Artists 1 Map and type instances
of class mo:MusicArtist.

Identify the correct table in the database with
more than 10 similar tables.

Artists 2 Construct foaf:name
triples for artists

Identify the unique ID and the name attribute
spread over two tables and write a SQL query for
joining two tables.

Recordings 1 Map and type instances
of class mo:Recording

Besides mo:recording the ontology contains other
similar concepts (e.g., recording session), which
can be disambiguated only when carefully read-
ing of the description.

Recordings 2 Construct mo:duration
triples for recordings

In the relational database the duration property
is called length.

Tracks 1 Map and type instances
of class mo:Track

Identify the correct ID attribute while most at-
tributes show purely numeric sample data.

Tracks 2 Construct
mo:track number triples
for recordings

Task description mentions position on an album
(like database attribute), but not number (as used
in ontology)

Table 1: Study Tasks and Associated Challenges

4.3 Structure of the Study

We structured the study in four parts: (1) initial questionnaire, (2) introduction
and technical briefing, (3) mapping tasks (the key part of the study), and (4) a
catamnestic questionnaire.

Initial Questionnaire: We asked participants to rate their technical knowl-
edge in the relevant fields (relational databases and SQL, and RDF and ontolo-
gies) to address key question 2 (i.e., the influence of the background knowledge).
Users could rate their skills on a scale from 1 to 5 (with 1 indicating extremely
low and 5 indicating very high expertise).

Study Introduction: After that, we introduced users to the study and the
mapping editor in a wizard-style introduction of six subsequent web pages. Users
were introduced to R2RML mappings in general (mapping from databases to
ontologies), the application domain (music) and the general problems of finding
correspondences without in-depth knowledge of the schema and ontology. They
were then familiarized with the mapping editor by showing and explaining an
example mapping rule in screen shots.

Mapping Tasks: In the main part of the study, we asked users to perform
the different mapping tasks previously described in Section 4.1. For each task,
users can see the high-level description of the task’s information need as well as
more detailed instructions for the current step they are working on. From the
task description page, users can follow a link to the editor’s main page, which
shows all existing mapping rules created so far as well as entry points to browse
the database schema and/or the ontology.

To make sure that the users follow different exploration strategies (i.e. first
browse the ontology and then the database and then the other way round),
we varied the availability of entry points for browsing from task to task. This

helped us to discuss key question 1, which analyzes the influence of different
approaches on the mapping results. Therefore half of the users would, for their
first task, only be able to browse and explore the ontology (not the database)
to create associated mapping rules. Once a mapping rule was created, users
could enter matching database information by using standard editor tools, i.e.,
lists of available database tables, data previews, as-you-type auto-completion
and, possibly, automatic suggestions. For the second task, those users would
then only be able to initially browse the database schema (not the ontology) to
create mapping rules. Matching ontology aspects could then only be entered in
the editor itself. For the other half of the users browsing and exploration went
the other other way around (i.e., they could only access the database schema in
the first task and only the ontology in the second). For the last task, all users
were free to try either way.

Moreover, we presented the three tasks in random order to all participants
in order to compensate for a potential bias introduced by the learning curve of
getting familiar with the schema, ontology and mapping editor. This should help
us to better analyze key question 3 (i.e., the influence of different task types).

Finally, to discuss key question 4, half of the users were provided with auto-
mated mapping suggestions, while the others were not.

While browsing, exploring or editing mapping rules, participants could always
mark the current step as completed, which would advance them to the next step,
again showing the task/step description with current information. Participants
could as well skip a step, which would also advance them to the next step or
task. We kept a record of whether user marked steps a completed or skipped in
order to compare the correctness of the mappings to the participants’ confidence
in their correctness. Also, participants could always follow a link back to task
and step instructions and double-check what to do before proceeding to edit
their mapping rules.

Catamnestic Questionnaire: After all tasks were completed (or skipped)
we asked for each of the tasks how the user felt about solving them. While
doing so, we reminded participants of the different browsing and exploration
options they had in the different tasks to draw their attention to those different
strategies. Participants could rate the options for each task on a scale from 1 to
5. This was to to inquire whether users would have a preference for one approach.

4.4 Study Results

From a total of 47 participants we considered 31 result sets for evaluation. The
remaining 16 users quit the study during the briefing or during the first task and
produced too little usable data. Out of all 31 participants considered, 13 ranked
themselves as experts in ontologies, while 11 ranked themselves as experts in
databases (skill level of 4 or 5 on a scale from 1 to 5).

General Findings: A first look mostly confirms our expectations.
Figure 4 shows a comparison between the two main editing approaches from

different angles. Neither the average time that users needed to complete a task
(Fig. 4a), nor the correctness of results produced with each approach (Fig. 4b)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

ONTO
DB

Av
er

ag
e

Ti
m

e
Pe

r T
as

k
[s

ec
]

Average Time

(a) Time Taken

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

ONTO
DB

Av
er

ag
e

C
or

re
ct

ne
ss

Average Correctness

(b) Correctness

 1

 2

 3

 4

 5

ONTO
DB

Av
er

ag
e

Sc
or

e
[1

..5
]

Average Score

(c) Average Rating

Fig. 4: Overall Per-approach Averages of Correctness, Time Taken, User Ratings

show significant differences. Our first hypothesis, namely that in the general case
no approach outperforms the other, is therefore retained.

Also, participants felt about as comfortable with the ontology approach as
they did with the database approach, as the catamnestic survey reveals (Fig. 4c).
This is particularly interesting, as users overwhelmingly turned to the database-
driven approach when given the choice in the last task. Additionally, we observed
whether users produced more and smaller or fewer and larger mapping rules
under different circumstances. We found that expert users tended to produce
slightly fewer rules than non-experts.

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

1st Task

2nd Task

3rd Task

Av
er

ag
e

Ti
m

e
[s

ec
]

Average Time

(a) Average Time

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

1st Task

2nd Task

3rd Task

C
or

re
ct

ne
ss

/C
on

fid
en

ce

Correctness (measured)
Confidence (self-assessed)

(b) Correctness and User Confidence

Fig. 5: Influence of Task Number on Time Taken, Correctness, User Confidence

Little surprisingly, participants spent the longest time on the first task,
worked faster on the second and again faster on the third (Fig. 5a). Somewhat
less expected, however, the correctness of results also continuously declines with
the task number (Fig. 5b). With result quality in mind this is a little unsettling
because the correlation between correctness and the self-assessment of task suc-
cess by the users is rather weak, as can also be seen in Figure 5b. On top of that,
participants in general tend to overestimate the correctness of their mapping

rules. This comes despite the fact that the editor offered preview data both for
the relational source and for resulting target triples to allow for sanity checks.

Editing Approach per User Background: According to our second hy-
pothesis, different approaches should work differently well for users with different
background knowledge. As Figure 6 shows, this is in fact the case.

As was to be expected, users with a stronger background knowledge gener-
ally produce better results than those with poorer skill levels. Figure 6a shows
the impact of different levels of background knowledge. Please note that, while
the level of database skills was almost evenly distributed, only two users rated
themselves into the middle tier of RDF and ontology skills; the drop of resulting
correctness for mid-level ontology knowledge is dominated by an outlier.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

Weak Knowledge [1..2]

Mid Tier]2..4[*)

Strong Knowledge [4..5]

Av
er

ag
e

C
or

re
ct

ne
ss

Correctness/Expertise Level
Overall/Combined
ONTO Knowledge

DB Knowledge

(a) By User Expertise

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

Weak Knowledge [1..2]

Mid Tier]2..4[*)

Strong Knowledge [4..5]

Av
er

ag
e

C
or

re
ct

ne
ss

Correctness/Ontology Expertise Level
ONTO mode

DB mode

(b) By Ontology Skills

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

Weak Knowledge [1..2]

Mid Tier]2..4[

Strong Knowledge [4..5]

Av
er

ag
e

C
or

re
ct

ne
ss

Correctness/DB Expertise Level
ONTO mode

DB mode

(c) By DB Skills

Fig. 6: Influence of Different Background Knowledge on Correctness

Interestingly, though, it is not the case that database experts work better
with the database approach while ontology experts improve when working with
the ontology approach, but the other way around. At second glance, however, this
makes perfect sense: in the ontology mode, users have the opportunity to browse
and explore the ontology first, then they need to identify the corresponding
database table(s) in the editor, which offers less exploration and visualization
possibilities (for database mode it is the other way around). Thus, users who are
proficient in databases were more successful when the tougher part – finding a
mapping partner – could be handled in the database world that they are familiar
with, and vice-versa.

Browsing and Exploration Methodology per Task: As a third hypoth-
esis we assumed that different approaches would work differently well on different
task types and associated challenges.

Figure 7 clearly shows that this is the case, with each approach in the lead
on correctness for some of the tasks. Observations on which approach works
better for which task also largely match exceptions, when considering the specific
challenges for each task and step described in Section 4.2. For instance, the
second step of the Recording task (Recording#2) required to solve a lexical
mismatch (i.e., duration in the ontology and task description vs. length in the
database schema), which we expected to work better if users work in an ontology-
driven approach since it is harder to pick an attribute in the database schema

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

Artists #1

Artists #2

Recordings #1

Recordings #2

Tracks #1

Tracks #2

Av
er

ag
e

Ti
m

e
[s

ec
]

ONTO mode
DB mode

(a) Average Time

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

Artists #1

Artists #2

Recordings #1

Recordings #2

Tracks #1

Tracks #2

Av
er

ag
e

C
or

re
ct

ne
ss

ONTO mode
DB mode

(b) Average Correctness

Fig. 7: Correctness and Time Taken per Task, Step, and Editing Approach

with a totally different name (i.e., length) without any context and assistance.
For this task step the ontology-driven approach is on a clear lead in correctness.

Influence of Automatic Suggestions: Finally, our fourth hypothesis says
that suggestions should have a stronger positive impact with the ontology ap-
proach. Figure 8 depicts the impact of automatic suggestions. We provided sug-
gestions for logical tables in ontology mode, for ontology classes in database
mode and for predicate/attribute correspondences in both cases.

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500
 550
 600
 650
 700

Artists #1

Artists #2

Recordings #1

Recordings #2

Tracks #1

Tracks #2

Av
er

ag
e

Ti
m

e
[s

ec
]

Impact of Suggestions on Time
ONTO Without Suggestions

ONTO With Suggestions
DB Without Suggestions

DB With Suggestions

(a) Average Time

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

Artists #1

Artists #2

Recordings #1

Recordings #2

Tracks #1

Tracks #2

Av
er

ag
e

C
or

re
ct

ne
ss

Impact of Suggestions on Correctness
ONTO Without Suggestions

ONTO With Suggestions
DB Without Suggestions

DB With Suggestions

(b) Average Correctness

Fig. 8: Influence of Automatic Suggestions for Different Strategies

Figure 8a shows that the presence of suggestions can save working time,
though not in all cases. When analyzing the influence of suggestions on the
correctness of R2RML mapping rules (Fig. 8b), our hypothesis is partially con-
firmed. As expected, the ontology-driven approach gains in most cases in cor-
rectness (i.e., in five out of six steps) when providing logical tables as mapping
suggestions (since this involves writing potentially complex SQL queries). In
particular in the artist task, where users had to manually write a SQL join,
the gain of the appropriate logical table suggestion is noticeable high and also
clearly puts the ontology mode in lead before the database mode for this task.
For the database-driven approach, however, mappings suggestions have a nega-
tive impact for many task steps (i.e., in three out of six steps). We cannot really
explain this observation for the database-driven approach. Instead, we speculate
that some users deliberately have chosen absurd suggestions at the end of the

study to finish their last tasks quicker, which would also explain the general drop
in correctness for the later tasks in Figure 5b.

5 Related Work

Data integration is a well studied research problem [2]. However, studying differ-
ent editing approaches for mapping construction that involve user interactions
for data integration tasks has gained relatively less attention so far. Most re-
search in the field of data integration has been focusing on automatic approaches
for schema alignment, record linkage, data fusion etc. We believe that with the
growth of schema complexity as well as with the increasing need to integrate
more and more data sources, new interactive approaches for constructing com-
plex mappings are getting necessary.

Some RDB2RDF editors exist that offer advanced and more or less visual
user interfaces, e.g., [1,10]. However, these are based on domain specific lan-
guages predating R2RML. To the best of our knowledge, no other editors to date
expose R2RML semantics through a visual interface. [11] describes an Eclipse
plugin that supports R2RML execution as well as mapping generation with cus-
tom algorithms. Neto et al. have demonstrated a mapping editor with a highly
visual interface that eventually generates R2RML [6]. However, they not expose
R2RML semantics but only simple correspondences used as assertions. Arguably,
the expressiveness of these assertions is only a subset of R2RML.

Only a few recent papers exist that include user studies that analyze ap-
proaches for user-centric data integration [13,3,4]. Both [3] and [13] contain user
studies that analyze the effectiveness and efficiency of existing visual tools for
data integration that follow a similar cognitive support model. This cognitive
support model represents a very strict approach for creating mapping rules: first,
a set of mapping rules is created automatically, then these rules are applied to
some data and finally users verify the individual rules by marking the results as
correct or incorrect. Compared to this very strict approach, [4] introduces a new
interactive data transformation language that leaves much freedom to the user
which approach the user actually will apply. Basically, the user can apply a set
of data transformation primitives in any order and is supported by interactive
data visualization tools to preview results, histories to undo changes, etc.

Our editor is in-between these two extremes and proposes two general ap-
proaches that support users to curate mapping rules by either selecting schema
elements from the source schema or the target schema that are then mapped
to the other side. These approaches are analyzed in a comprehensive user study
with more than 31 usable data sets of 47 participants, which is a higher number
than reported in the other user studies (which range from 4-22 participants).

6 Conclusions

We presented the results of a comprehensive user study that evaluates alternative
mapping editing approaches (ontology-driven vs. database-driven) to construct

R2RML mapping rules in an editor. Consequently, we tested different hypotheses
and measured the time and correctness for different mapping tasks.

We found out that neither approach is at a significant advantage of the other
in the general case. However, we have seen that the ontology-driven approach
works better for users with a background in databases and vice-versa, which
was initially counter-intuitive for us. We also found a strong influence of task
characteristics on the resulting mappings. Finally, it showed that automatic sug-
gestions tend to have more impact on the ontology driven approach. It needs to
be noted that, when given the choice, all users overwhelmingly tend to follow the
database-driven approach, not the one that statistically works better for them.

As a result of our observations, we can make the following recommendations
for building R2RML editors:
1. It is desirable to support both basic approaches, ontology-driven and database-

driven, as each works better under different circumstances.
2. We cannot expect users to choose the best approach. Instead, an editor

should try to learn about their background and, if possible, about the map-
ping tasks and then actively propose the adequate approach.

3. Prominent validation mechanisms should be offered, as users largely overes-
timate the quality of their mapping rules, even with data previews available.

4. When working with automatic match suggestions, the ontology-driven ap-
proach is somewhat more promising.

References

1. Bizer, C., Seaborne, A.: D2RQ-treating non-RDF databases as virtual RDF graphs.
In: ISWC (2004)

2. Dong, X.L., Srivastava, D.: Big Data Integration. PVLDB 6(11), 1188–1189 (2013)
3. Falconer, S.M., Noy, N.F.: Interactive Techniques to Support Ontology Matching.

In: Schema Matching and Mapping (2011)
4. Kandel, S., Paepcke, A., Hellerstein, J., Heer, J.: Wrangler: interactive visual spec-

ification of data transformation scripts. In: CHI (2011)
5. Kharlamov, E. et al.: Optique 1.0: Semantic Access to Big Data. In: ISWC (Posters

& Demos) (2013)
6. Neto, L.E.T. et al.: R2RML by Assertion: A Semi-automatic Tool for Generating

Customised R2RML Mappings. In: ESWC (Satellite Events) (2013)
7. Pinkel, C., Binnig, C., Kharlamov, E., Haase, P.: IncMap: Pay-as-you-go Matching

of Relational Schemata to OWL Ontologies. In: OM (2013)
8. Pinkel, C. et al.: Pay as you go Matching of Relational Schemata to OWL Ontolo-

gies with IncMap. In: ISWC (Posters & Demos) (2013)
9. Raimond, Y., Giasson, F., (eds): Music Ontology, www.musicontology.com (2012)

10. Rodriguez-Muro, M., Calvanese, D.: -ontop- framework (2012), http://obda.inf.
unibz.it/protege-plugin/

11. Salas, P.E., Marx, E., Mera, A., Breitman, K.K.: RDB2RDF Plugin: Relational
Databases to RDF plugin for Eclipse. In: TOPI (2011)

12. Sengupta, K., Haase, P., Schmidt, M., Hitzler, P.: Editing R2RML Mappings Made
Easy. In: ISWC (Posters & Demos) (2013)

13. Stuckenschmidt, H., Noessner, J., Fallahi, F.: A Study in User-centric Data Inte-
gration. In: ICEIS (3) (2012)

http://obda.inf.unibz.it/protege-plugin/
http://obda.inf.unibz.it/protege-plugin/

	How to Best Find a Partner?An Evaluation of Editing Approaches to Construct R2RML Mappings

