
Hybrid Acquisition of Temporal Scopes for RDF
Data

Anisa Rula1, Matteo Palmonari1, Axel-Cyrille Ngonga Ngomo2, Daniel
Gerber2, Jens Lehmann2, and Lorenz Bühmann2

1 University of Milano-Bicocca
{anisa.rula|palmonari}@disco.unimib.it

2 Universität Leipzig, Institut für Informatik, AKSW
{ngonga|dgerber|lehmann|buehmann}@informatik.uni-leipzig.de

Abstract. Information on the temporal interval of validity for facts de-
scribed by RDF triples plays an important role in a large number of ap-
plications. Yet, most of the knowledge bases available on the Web of Data
do not provide such information in an explicit manner. In this paper, we
present a generic approach which addresses this drawback by inserting
temporal information into knowledge bases. Our approach combines two
types of information to associate RDF triples with time intervals. First,
it relies on temporal information gathered from the document Web by an
extension of the fact validation framework DeFacto. Second, it harnesses
the time information contained in knowledge bases. This knowledge is
combined within a three-step approach which comprises the steps match-
ing, selection and merging. We evaluate our approach against a corpus of
facts gathered from Yago2 by using DBpedia and Freebase as input and
different parameter settings for the underlying algorithms. Our results
suggest that we can detect temporal information for facts from DBpedia
with an F-measure of up to 70%.

Keywords: #eswc2014Rula, Temporal Information Extraction, Temporal Se-
mantic Web, Temporal Scoping, Fact Checking

1 Introduction

Over the last few years, the Linked Open Data (LOD) Cloud has developed into
a large amalgamation of diverse data sets from several domains [2]. Some of
these data sets provide encyclopedic knowledge on the real world. For example,
DBpedia [12] contains RDF extracted from the infoboxes of Wikipedia.3 While
some of the statements contained in the LOD Cloud are universally valid (e.g.,
the fact that the birth place of Mario Balotelli is Palermo), a large portion of the
facts which are referred to by the triples in the LOD Cloud are only valid within
a certain time interval, which we call their time scope. For example, DBpedia
states that Mario Balotelli plays for the teams Inter Milan and Manchester City.
While the semantics of the predicate dbo:team4 remains a matter of discussion,

3 http://wikipedia.org
4 dbo stands for http://dbpedia.org/ontology/.



manifold applications such as question answering [20], temporal reasoning and
temporal information retrieval [9] require having the temporal scope of facts
such as “Mario Balotelli plays for the team Inter Milan from 2007 to 2010”.

In this paper, we introduce an approach for detecting the temporal scope of
facts referred to by triples (short: the temporal scope of the triples). Given a fact
(i.e., an RDF triple), our approach aims to detect the time points at which the
temporal scope of the triple begins and ends. Two sources can be envisaged for
gathering such information: the document Web and the Linked Data Web. Our
approach is able to take advantage of both: the document Web is made use of
by extending upon a fact validation approach [11], which allows detecting Web
documents which corroborate a triple. In contrast to typical search engines, the
system does not just search for textual occurrences of parts of the statement,
but tries to find webpages which contain the actual statement phrased in natural
language. The second source of information for time scopes is the Web of Data
itself. Here, we use the RDF data sets that contain the facts, e.g., DBpedia and
Freebase, for possible time scopes and devise an algorithm for combining the
results extracted from Web documents with those fetched from RDF sources.
The algorithm consists of three main steps. First, the evidence extracted from
Web documents is matched against a set of relevant time intervals to obtain
a significance score for each interval. Second, a small set of more significant
intervals is selected. Finally, the selected intervals are merged, when possible, by
considering their mutual temporal relations. The set of disconnected intervals [1]
returned by the algorithm defines the temporal scope of the fact. We also propose
two normalization strategies that can be applied to the data extracted from Web
documents before running the algorithm, to account for the significance of dates
appearing in the documents corroborating the input fact.

The main contributions of this paper are:

– We introduce a temporal extension of the DeFacto framework based on a
sliding window approach on fact-confirming documents.

– We present an approach for modeling a space of relevant time intervals for
a fact starting from dates extracted from RDF triples.

– We devise a three-phase algorithm for temporal scoping, i.e. for mapping
facts to sets of time intervals, which integrates the previous steps via match-
ing, selection and merging.

– Finally, we evaluate the integrated algorithm on facts extracted from DBpe-
dia and Freebase against the Yago2 knowledge base.

The rest of this paper is structured as follows: Section 2 describes our general
approach and the system infrastructure. In Section 3, we describe how tempo-
ral information is extracted from web pages using a temporal extension of the
DeFacto algorithm [11]. Section 4 shows how this information can be mapped
to a set of time intervals specifying its temporal scope. We then evaluate the
approach by using temporal scopes from Yago2 as gold standard and facts from
DBpedia and Freebase as input in Section 5. We give an overview of related work
in Section 6. Finally, we conclude and give pointers to future work.



2 Problem Definition and Approach Overview

Linked Open Data describes resources identified by HTTP URIs by representing
their properties and links to other resources using the RDF language. Given an
infinite set U of URIs, an infinite set B of blank nodes, and an infinite set L of
literals, a statement < s, p, o >∈ (U ∪ B) × U × (U ∪ B ∪ L) is called an RDF
triple. As the use of blank nodes is discouraged for LOD [3], we will assume that
the subject and the property are URIs, while the object can be either a URI or
a literal.

Most of the resources described in the LOD Cloud represent real-world ob-
jects (e.g., soccer players, places or teams); we use the term entities as a short
form for named individuals as defined in the OWL 2 specification. According to
the LOD principles [3], we assume that each entity e can be dereferenced. The
result of the dereferencing is an RDF document denoted de which represents
a description of the entity e. We say that de describes e and de is an entity
document [8]. As an example, an entity document de returned by DBpedia in
NTriples [6] format contains all the RDF triples where e occurs as a subject. In
this work, RDF triples occurring in entity documents are called facts.

A fact represents a relation between the subject and the object of the triple
and, intuitively, it is considered true when the relation is acknowledged to hold.
We use the term volatile facts to refer to facts that change over time, and are
represented by triples whose validity can be associated with a temporal context
(e.g., <Balotelli, team, Inter Milan> refers to a fact occurring from 2007 to
2010). Adopting a terminology used in previous work on temporal information
extraction, we call temporal scope of facts the specification of the time during
which facts occured [19].

Despite several models to represent time into RDF having been suggested,
only a small amount of RDF data sets annotate triples with their temporal scope.
This is partly due to the sophisticated meta-modeling strategies needed to rep-
resent temporal annotations in RDF [18]. As a consequence, several knowledge
bases contain volatile facts without explicitly annotating the triples with infor-
mation about their temporal scope. We define a temporal annotation of a fact a
couple < f, [ti, tj ] >, where f is a fact and [ti, tj ] is a time interval delimited by a
starting time point ti and an ending time point tj . In this paper we regard time
as a discrete, linearly ordered domain, as proposed in [7]. In our discrete time
model, two intervals [ti, tj ] and [th, tk] are disconnected iff tj < th, or tk < ti,
and connected otherwise. The temporal scope of a fact f is defined as a set of -
possibly many - temporal annotations of f with disconnected time intervals.

The problem addressed in this paper can be defined as follows: for each
volatile fact f ∈ F extracted from a data set ∆, we map f to a set TSf =
{[ti1 , tj1 ], ..., [tin , tjn ]} where TSf defines the temporal scopes of f and each ele-
ment represents a time interval when the fact is true. Figure 1 gives an overview
of our solution. Evidence is extracted from Web and RDF documents and a space
of possible time intervals relevant to the fact is built; the evidence extracted from
Web documents is matched against the space of relevant time intervals and a
final set of temporal scopes are associated with the input fact.



Fig. 1. Approach Overview

3 Temporal Information Extraction

In this section we describe the methods we adopted to extract temporal informa-
tion from two sources: the Web of documents and the Web of Data. The latter
source contains the facts to be assigned with a temporal scope.

3.1 Extraction of Temporal Information from the Web

Temporal DeFacto is an extension to the DeFacto framework presented in [11].
The system takes an RDF triple as input and returns a confidence value for
this triple as well as possible evidence for the fact. The evidence consists of
a set of webpages, textual excerpts from those pages and meta-information on
the pages. The first task of DeFacto is to retrieve webpages which are relevant
for the given task. The retrieval is carried out by issuing several queries to a
search engine. These queries are computed by verbalizing the RDF triple us-
ing natural-language patterns extracted by the BOA framework [5]. As a next
step, the highest ranked webpages for each query are retrieved, which are can-
didates for being sources for the input fact. Both the search engine queries as
well as the retrieval of webpages are executed in parallel to keep the response
time for users within a reasonable limit. Once a webpage has been retrieved, we
extract plain text by removing HTML markup and apply our fact confirmation
approach on this text. In essence, the algorithm decides whether the web page
contains natural language formulations of the input fact. If no webpage confirms
a fact according to DeFacto, then the system falls back on light-weight NLP
techniques and computes whether the webpage does at least provide useful evi-
dence. In addition to fact confirmation, the system computes different indicators
for the trustworthiness of a webpage as presented in [15]. These indicators are
of central importance because a single trustworthy webpage confirming a fact
may be a more useful source than several webpages with low trustworthiness. In
addition to finding and displaying useful sources, DeFacto also outputs a general
confidence value for the input fact. This confidence value ranges between [0, 1]
and serves as an indicator for the user: Higher values indicate that the found
sources appear to confirm the fact and can be trusted. Low values mean that



not much evidence for the fact could be found on the Web and that the websites
that do confirm the fact (if such exist) only display low trustworthiness. The
generated provenance output can also be saved directly as RDF and abides by
the PROV Ontology5. The source code of the DeFacto algorithms and DeFacto’s
user interface are open-source6.

Temporal Extension of DeFacto. To also incorporate time information
into the fact validation process we extended DeFacto as follows. On all retrieved
webpages we apply the Stanford Named Entity Tagger7 and extract all entities
of the Date class. We then examine all occurrences occso ∈ Occso of the subject
and object label of the input fact (or their surface forms, e.g. “Manchester United
F.C.” might also be called “ManU”) in a proximity of less than 20 tokens.
We then build a local context window of n characters before and after occso
and analyze all contained Date entities. Finally we return a distribution of all
dates and their number of occurrences in a given context. Hence, the output of
temporal DeFacto for a fact f <s, p, o> can be regarded as a vector DFV over
all possible time points ti whose ith entry is the number of co-occurrences of s
or o with ti. We will use the function dfvi(f, ti) to denote the value of DFVi for
the fact f .

3.2 Extraction of Temporal Information from RDF documents

Given a set F of facts to map to time intervals, we first identify the set of entities
E that occur as subjects for the set of facts in F . Given the entity e subject
of the fact, we use the HTTP content negotiation mechanism to retrieve the
entity document de. As an example, given the fact <Cristiano Ronaldo, team,
Real Madrid>, we extract the RDF document describing Cristiano Ronaldo.
Once an entity document has been retrieved, we extract time points from the
temporal triples that are contained in the entity document. We define a temporal
triple a triple of the form < s, p, t >, where the object t is a time point. As
an example, although DBpedia does not provide temporal annotations for the
fact <Cristiano Ronaldo, team, Manchester United>, it has the temporal triples
<Cristiano Ronaldo, years, 2009> and <Cristiano Ronaldo, youthYears, 1995>.
Some of these dates refer to other facts of the same entity; however, the link
between the facts containing the dates and the facts these dates were related to
has been lost. We use temporal triples available in the knowledge base under the
assumption that this information can be relevant to define the scope of facts.

Given an entity e subject of a fact, we identify temporal triples in the en-
tity document de and extract dates by using regular expressions, which identify
standard date formats and variations. In this step we adopt an approach that
was used in previous work [18]. We add to this set of extracted dates a date
representing the current time. As a result of this step, each fact f ∈ F is asso-
ciated with a set of relevant time points T e extracted from the RDF document

5 http://www.w3.org/2011/prov/
6 https://github.com/AKSW/DeFacto
7 http://www-nlp.stanford.edu/software/CRF-NER.shtml



describing the subject of the fact. In principle, our approach can consider dates
represented at any granularity level; in the following examples and in the exper-
iments, time is represented at the year level similarly as in other related work
[13, 19].

Intuitively, we want to use the relevant time points T e associated with an
entity e to identify a set of most relevant time intervals for scoping facts having
e as subject; in this way, we can reduce the space of all possible time intervals
considered for an individual fact. The set of time intervals relevant to an entity
e is defined as the set of all time intervals whose starting and ending points are
members of T e. Relevant time intervals are represented using an upper triangular
matrix, i.e., a square matrix where all entries below the diagonal are 0.

Given a set T e of relevant time points for an entity e, a relevant time interval
matrix (Relevant Interval Matrix for short) RIMe is an upper triangular matrix
of size |T e| × |T e| defined as follows:

RIMe =


rime

t1,t1 · · · · · · rime
t1,tn

0
. . .

0 0
. . .

0 0 0 rime
tn,tn

 (1)

Columns and rows of a relevant interval matrix RIMe for an entity e are
indexed by ordered time points in T e; each cell rime

ti,tj with i, j > 0 represents
the time interval [ti, tj ], where ti, tj ∈ T e. At the moment we assign a placeholder
value null to each cell rime

i,j such that i ≤ j. In the matching phase, we will use
entity-level RIMs as schemes for fact-level matrices; in these fact-level matrices
null values will be replaced by scores that represent the significance of intervals
for individual facts. Observe that the use of an upper triangular matrix is suitable
for representing time intervals since the time intervals represented in the cells in
the lower part of the matrix (i > j) are not valid by definition. Also note that,
the cells in the diagonal of the RIMe matrix represent time intervals whose start
and end points coincide.

4 Mapping Facts to Time Intervals

The process used to provide a final mapping between a volatile fact and a set of
time intervals defining its temporal scope consists of three phases: 1) Temporal
Distribution-to-Time Intervals Matching, 2) Time Intervals Selection 3) Time
Interval Merging. Figure 2 shows an overview of the application of the three
phases to a fact f , with a RIM built from a set of four relevant time points
extracted from the entity document. The algorithm can take as input the vectors
returned by Temporal DeFacto, i.e., DFVs, as well vectors normalized using two
functions defined in Section 4.2.



Fig. 2. Time Interval Mapping Overview

4.1 Matching, Selection and Reasoning

Temporal Distribution to Time Intervals Matching. The inputs of the
matching phase for a fact f that has an entity e as subject are the following:
a relevant interval matrix RIMe extracted the entity document de and a time
distribution vector DFV e,f . Probabilistic time distribution vectors obtained by
normalization (see Section 4.2) can be also used as input instead of DFVs. The
matching phase returns an interval-to-fact significance matrix, Significance Ma-
trix (SM) for short, SMe,f associated with the fact f . An SMe,f is a triangular
square matrix having the same size and structure of the input RIMe. As a next
step, null values of a RIMe are replaced with significance scores returned by a
matching function.

In practice, to build an SMe,f of a fact f with subject e, we match a fact-level
DFV f associated to the fact f against an entity-level RIMe, i.e. the matching
aims to inject a time distribution vector into RIMe by producing a significance
matrix SMe,f . The matching function match(DFV f , RIMe) = SMe,f , where
e is an entity and f is a fact, is given as follows:

smi,j =


0 if rimi,j = 0

j∑
k=i

dfv(f,k)

(j−i)+1 if rimi,j = null ∧ i < j

dfv(f, i) ∗ wi,j if rimi,j = null ∧ i = j

(2)

Since the denominator (j − i) + 1 in the formula used in case two represents
the number of time points included in the interval [i, j], the formula is equal to
the average of DFVs for the time points contained in the interval. As an example,
the score for a cell sm1995,2000 is defined as the average value of DFV for the
time points between 1995 and 2000 (including the starting and ending points).
Since the elements in the diagonal have length equal to 1, the formula used in
case three is equivalent to multiplying the score computed with the formula used
in case two for a weight wi,j ; we use this weight to penalize the scores in the
diagonal as we discovered that formula in case two would assign high scores to
the element in the diagonal, thus favoring time intervals with length equal to 1
in the selection phase. Intuitively we want to penalize elements in the diagonal



unless they are the only significant values selectable in the SM matrix. The
weight is defined as inversely proportional to the difference between the length
of the considered interval (equal to 1) and length(DFV f ) the length of the DFV
vector as follows:

wi,j =
1

c ∗ length(DFV f )
(3)

where c is a constant used to control the score reduction ratio applied to the
elements in the diagonal of the SM matrices.

Mapping Selection. Once we have a set of significance matrices SMe,f1 , ...,
SMe,fn , each one associated with a fact fi referred to e, we then select the
time intervals that might be mapped to the considered facts. We propose two
basic selection functions that use SMs; both functions can select more than one
interval to associate with a fact f . The top-k function selects the k intervals
that have best scores in the SM matrix. The neighbor-x selects a set of intervals
whose significance score is close to the maximum significance score in the SM
matrix, up to a certain threshold. In other terms, we define the neighborhood of
the time interval with maximum significance score as the set of intervals whose
significance scores fall in the range defined by the maximum score as upper bound
and by a threshold based on a parameter x as lower bound. The threshold is
linearly proportional to the maximum significance score, so that the threshold
is higher when the maximum significance is higher (e.g., 0.9) and lower when
the maximum significance is lower. The parametric function neighbor-x with an
SM and a parameter x given as input is defined as follows:

neighbor(SM, x) =

{
[i, j] | smi,j ≥ maxScore−

x ∗maxScore
100

}
(4)

The two basic functions top-k and neighbor-x can be combined into a function
neighbor-k-x that selects the top-k intervals in the neighborhood of the interval
with higher significance score. Observe that neighbor-0 is equal to top-1 for
every value of the parameter x. The neighbor-k function behaves as a filter on
the results of the top-k function, by selecting only intervals whose significance
is close enough to the most significant interval.

Interval Merging via Reasoning. Finally, we use rules based on Allen’s
interval algebra to merge the selected time intervals and map each fact to a
set of disconnected intervals. Let a and b be two time intervals associated with
a fact f and defined respectively by [ti, tj ] and [th, tk]; we merge a and b into
an interval defined by [min(ti, th),max(tj , tk)] whenever one of the following
conditions, each one based on Allen’s algebra relations [1], is verified:

– a overlap b or a is-overlapped-by b
– a meets b or a is-met-by b
– a during b or b during a
– a starts b or b starts a
– a finishes b or b finishes a

The temporal scope of a fact is defined by the set of disconnected time
intervals mapped to it after the interval merging phase.



4.2 Temporal Distribution Normalization

Two types of normalization functions can be envisaged: local normalization and
global normalization. These functions aim to transform the output vector of tem-
poral DeFacto (the DFV vector) into a probabilistic time distribution (PTD)
vector. Here, the main idea of the local normalization is that the PTD contains
the probability that the fact <s, p, o′ > should be mapped to a given time point
ti. The main drawback of such a normalization is that it does not take the PTD
vector for other facts <s, p, o′ > into consideration. We thus defined global nor-
malization functions that allow transforming the output of temporal DeFacto
for all triples with subject s and predicate p. When normalization strategies are
adopted, the PTDs are used instead of DFVs in Equation 2.

Local Normalization. Several approaches can be used to generate a PTD.
The approach we follow is based on the frequency-based interpretation of the
output of Temporal DeFacto: The ith entry in DFV basically states the number
of times f co-occurred with the time point ti in a relevant document. Thus, the
probability that f co-occurs with the time point ti is:

PTDi =
DFVi

|T e|∑
j=1

DFVj

. (5)

Global Normalization. Our approach to the computation of a global nor-
malization was based on χ2 statistics. Given a resource s, a predicate p and a
point ti in time, the aim of the normalization was to compute the significance
of the value of DFVi. Let Ei be the expected value of DFVi for the time ti,
computed as average value of all DFVi entries for the resource s over all objects
of p. The significance of the time ti for the triple < s, p, oj > with vector DFV
is then

(DFVi − Ei)
2

Ei
. (6)

5 Experimental Evaluation

5.1 Experimental Setup

Methodology and Gold Standard. To evaluate our approach we acquire the
temporal scopes of a population of volatile facts from three different domains and
compare the results of our method against a gold standard. We use manually
curated data from Yago28 as gold standard. We omitted all facts with null

values, i.e. missing starting or end time. We choose Yago2 because it is one of
the few large open-source knowledge bases that provides temporal annotations
for a significant number of facts (714,925 time points associated with facts).

8 http://www.mpi-inf.mpg.de/yago-naga/yago/



Significant parts of DBpedia9, Freebase10 and Yago2 are extracted from the
same source which makes it possible to automatically map some facts in DBpedia
or Freebase to facts in Yago2. We therefore use facts in DBpedia, and Freebase in
our experiments and we extract RDF data from these sources. We additionally
consider the case where RIMs (see Section 3.2) are created with the time points
returned by Temporal DeFacto, to simulate the case when temporal information
from RDF data is not available.

Properties of Interests. The facts considered in our experiments are de-
fined using the top three properties having the largest number of occurrences in
Yago2. Table 1 shows the properties and the number of facts for each property.

Table 1. Properties of interest and the number of facts for each property

Property Number of facts

<ismarriedTo> 3,501
<holdsPoliticalPosition> 5,610
<playsFor> 114,367

Because we have a limit of queries sent through temporal DeFacto, which is
imposed by traffic limitations of its underlying search engine, we perform the
experiment on a subset of all available facts by applying some selection rules:
the top 1000 facts on the most important soccer players who are born after 1983
(≤30 years old), the top 1000 facts on politicians born after 1940, and the top
500 facts on celebrities born after 1930.

Measures. In order to evaluate the accuracy of our method, we measured
the degree to which the temporal scope we retrieved is correct w.r.t. the gold
standard. Therefore, for each fact, we consider the degree of overlap between the
retrieved intervals and the interval in the gold standard. This degree of overlap
can be computed by adapting the well-known metrics of precision, recall and
F1-measure to this problem leveraging the discrete time model. Intuitively, the
precision of a temporal scope can be measured by the number of time points in
the temporal scope generated by our solution that fall into the time interval in
the gold standard. The recall of our solution can be measured by the number of
time points in the gold standard that are covered by the temporal scope.

Let R(f) be the set of time points in the temporal scopes retrieved for a fact
f and Ref(f) be the set of time points included in the reference temporal scopes
for f ; the following formulas capture the intuitions described above:

precision(f) =
|R(f) ∩ Ref(f)|
|R(f)|

, recall(f) =
|R(f) ∩ Ref(f)|
|Ref(f)|

. (7)

Precision and recall for a fact f can be combined as usual in F1-measure defined
as the harmonic mean of precision and recall. Note that: when precision(f) = 1,
each interval in the retrieved temporal scope is included in the interval of the

9 http://dbpedia.org/
10 http://freebase.com/



gold standard; when recall(f) = 1, all the time points in the interval of the
gold standard are covered by the retrieved temporal scopes; when F1(f) = 1 the
temporal scope contains exactly the same time points as the gold standard.

Baseline. Given that no prior algorithm aims to tackle exactly the task at
hand, we computed the precision, recall and F-measure that a random approach
would achieve. To this end, we assumed that given the restrictions we set on the
intervals within which our solutions must lie (e.g., 1983-2014 for soccer players),
a random solution would simply guess for each date whether it should be part of
the final solution. This serves as a lower bound for the score a temporal scoping
algorithm should achieve.

5.2 Results and Discussion

In order to evaluate the overall accuracy of scoping facts with temporal in-
tervals we need to set up different configurations for each component of each
phase. Hence, we approximate the best configurations for some key components
of the proposed approach by using genetic programming11 based on opt4j12,
an open-source framework comprising a set of optimization algorithms. Genetic
programming allows to determine an appropriate configuration of our approach.
In the configuration setup we consider the interval selection functions and the
merging process of the selected intervals through reasoning (see Section 4.1) as
well as the normalizations strategies applied to the Temporal DeFacto Vectors
to obtain Probabilistic Temporal Distributions (PTDs) (see Section 4.2).

In the first experiment, we compare the best configurations for properties of
interests, i.e., (1) isMarriedTo, (2) holdsPoliticalPosition and (3) playsFor.
The space of relevant time intervals (RIM) is built from time points collected
from three different sources, i.e., Temporal DeFacto, Freebase and DBpedia.
Table 2 reports for each property and for each source the best F-measure achieved

Table 2. Results of best configurations for all property of interests.

Property Baseline Temp DeFacto Freebase DBpedia
#facts F1 Config #facts F1 Config #facts F1 Config #facts F1

1 500 0.163 top-3 311 0.511 top-1 loc 213 0.477 top-1 loc 264 0.505
2 1000 0.263 top-3 709 0.586 neigh-10-2 242 0.549 neigh-10 702 0.699
3 1000 0.207 top-3 709 0.545 neigh-10 524 0.547 neigh-10 705 0.600

by our approach. In one case, the RIM and the scores are defined with evidence
retrieved only from the web of documents (TempDeFacto for short). In other
two cases, the RIM is build with dates extracted from the web of data (Freebase
or DBpedia) and the scores are computed by injecting evidence from the web of
documents into this matrix. We observe that our approach perform much better
than the baseline, which does not use a prior algorithm, for every property and

11 http://goo.gl/2ve3xP
12 http://opt4j.sourceforge.net/



for every source used to construct the RIMs. The best configurations is obtained
for the property holdsPoliticalPosition with time points extracted from DB-
pedia and with selection function neighbor-k with x = 10. The configuration that
extracts time points from DBpedia outperforms Freebase and Temporal DeFacto
results except for the property isMarriedTo. The reason for this major gain can
be explained with the quantity and quality of relevant time points extracted
from the three sources. The problem is that Freebase and Temporal DeFacto do
not provide enough time points which can prevent the effective identification of
intervals. We notice that, while local normalization improves the results in one
experiment (for the property isMarriedTo), the global normalization strategy
is never optimal in any experiment. We will now compare the reasoning and
selection functions.

Different Components. Table 3 shows the contribution of reasoning for
the best configurations identified in the previous experiment. We use the full
approach with and without reasoning and apply it on the three properties. We
observe that enabling reasoning improves the performance of the temporal scop-
ing of facts. This validates our motivation behind using Allen’s Algebra, as it
can get rid of incomplete intervals.

Table 3. Effect of using reasoning during temporal scoping from the three best con-
figurations.

With reasoning Without reasoning
Property Source Config # facts F1 # facts F1

1 Temp DeFacto top-3 311 0.511 505 0.467
2 DBpedia neigh-10 702 0.699 822 0.667
3 DBpedia neigh-10 705 0.60 977 0.563

Based on these results, we can evaluate the effect of selection functions and
their application in DBpedia for the property holdsPoliticalPosition. Figure
3 compares four configurations. We observe that recall is improved when k is
increased but on the other side precision decreases as the approach returns larger
intervals including the correct interval and additional incorrect time points. The
best precision-recall is given with the combined selection function, neighbor-k
with x = 10.

6 Related Work

The work presented in this paper relies on two areas of research: the extrac-
tion of time information and fact checking. Extraction of Time Intervals.
Several machine learning approaches have been developed to discover links be-
tween events and temporal information (e.g., dates) into one or more sentences
of a document where the event is mentioned [21]. In alternative, the work in
[10] presents a method to link events or facts with timestamps according to a



Fig. 3. Effect of using selection function during temporal scoping of
holdsPoliticalPosition from DBpedia source.

classification approach. In contrast to these approaches, our approach is com-
pletely unsupervised and it does not need training data. Temporal Information
Extraction (TIE) [13] is a more recent system that finds a maximal set of tem-
poral annotations for events mentioned in a given sentence. Therewith, it can
infer relations between these events using the temporal annotations. Instead of
Allen-style intervals [1], TIE uses time points. However, this approach is not
sufficient to extrapolate the temporal scope of facts because it focuses on the
micro-reading of temporal annotations in single documents or sentences. Al-
though the aim of temporal bounding [4] and our approach is the same since
both retrieve temporal constraints given a fact, there are fundamental differ-
ences. NLP techniques employed in temporal bounding are more sophisticated
but at the same time more expensive and extract evidence from the text on a
limited corpus. Our approach uses softer, but more efficient, NLP techniques to
extract evidence from the whole web. Moreover, our approach investigates how
to complement evidence retrieve from texts with evidence from the web of data.

Timely Yago2 [9] has the objective of enriching facts with temporal scopes.
Instead of using the original data source (i.e, Wikipedia) where the link between
facts and time intervals is explicitly made available, our approach exploit the
evidence from the web of data where facts are not associated with time intervals
and the web of documents, i.e., free text evidence. Yago2 identify the time of
a fact if the time of the entities occurring in the fact is known and the prop-
erty occurring in the fact belongs to a predefined category. PRAVDA [22] is a
recently proposed method to harvest basic and temporal facts from free text.
The approach is based on a semi-supervised label propagation algorithm that
determines the similarity between structured facts and textual facts. Yet, it does
not use the verbalization of RDF triples to check for RDF triples in text like
DeFacto does. The system CoTS provided in [19] is similar to our system since it
also detects temporal scopes for facts. In contrast to our approach, CoTS relies
on document meta-data such as its creation data to assign temporal scopes to
facts. To ensure that it gathers enough information, CoTS aggregates evidences



from a large number of documents to temporally scope a set of facts. This ap-
proach is complementary to our current approach and can easily be combined
with it.

Fact Checking. Regarding the fact checking part of our approach, a very
recent algorithm was developed in [14]. It describes an approach, which allows
to evaluate the truth value of statements by querying the web and process-
ing unstructured web pages. It is based on training a supervised classifier with
features extracted from web pages. A difference to our own previous work on
DeFacto [11] is that we optimised the extraction by considering a larger vari-
ety of features related to patterns found on websites and also combined those
features with an analysis of the trustworthiness of web pages. In another line
of research on fact checking in [16, 17], trustworthy is also a central element.
The authors rely on a model based on hubs and authorities. This model allows
to compute the trustworthiness of facts and websites by generating a k-partite
network of pages and facts and propagating trustworthiness information across
it. The approach returns a score for the trustworthiness of each fact. An older
yet similar approach is that presented in [23]. Here, the idea is to use a 3-partite
network of webpages, facts and objects and apply a propagation algorithm to
compute weights for facts and webpages.

7 Conclusion and Future Work

In this paper, we presented an approach for mapping volatile facts to time inter-
vals. Our approach is hybrid and combines information from the document Web
and temporal statements included in knowledge bases. We evaluated our ap-
proach on volatile facts extracted from DBpedia and Freebase by using cleaned-
up temporal scopes extracted from Yago2. The cleaning was made necessary by
approximately 50% of the information in that knowledge base being either in-
complete or inconsistent (begin after end). This underlines the difficulty of the
task at hand. Our approach achieved promising results, delivering approximately
70% F-measure on the facts at hand. In future work, we will create a larger gold
standard for evaluating temporal scopes. Finally, we will develop applications
that use temporal information. For example, we plan to develop a temporal ex-
tension of the TBSL question answering framework that can answer questions
such as “When did Balotelli play for Inter Milan?”.

Acknowledgements

This research has been supported in part by FP7/2013-2015 COMSODE (under
contract number FP7-ICT-611358).

References

[1] J. F. Allen. Maintaining knowledge about temporal intervals. Communications
of the ACM, 26(11):832–843, 1983.



[2] S. Auer, J. Lehmann, and A.-C. N. Ngomo. Introduction to linked data and its
lifecycle on the web. In 5th RR, pages 1–75, 2011.

[3] C. Bizer, T. Heath, and T. Berners-Lee. Linked Data - The Story So Far. IJSWIS,
pages 1–22, 2009.

[4] L. Derczynski and R. Gaizauskas. Information retrieval for temporal bounding.
In 4th ICTIR, pages 29:129–29:130. ACM, 2013.

[5] D. Gerber and A.-C. N. Ngomo. Extracting Multilingual Natural-Language Pat-
terns for RDF Predicates. In 18th EKAW. Springer, 2012.

[6] J. Grant and D. Becket. Rdf test cases - N-Triples. Technical report, W3C
Recommendation, 2004.

[7] C. Gutiérrez, C. A. Hurtado, and A. A. Vaisman. Temporal RDF. In 2nd ESWC,
pages 93–107, 2005.

[8] T. Heath and C. Bizer. Linked Data: Evolving the Web into a Global Data Space.
Synthesis Lectures on the Semantic Web. Morgan & Claypool Publishers, 2011.

[9] J. Hoffart, F. M. Suchanek, K. Berberich, and G. Weikum. Yago2: A spatially
and temporally enhanced knowledge base from wikipedia. Artificial Intelligence,
194:28–61, 2013.

[10] D. Hovy, J. Fan, A. Gliozzo, S. Patwardhan, and C. Welty. When did that hap-
pen?: linking events and relations to timestamps. In 13th EACL, 2012.

[11] J. Lehmann, D. Gerber, M. Morsey, and A.-C. Ngonga Ngomo. DeFacto - deep
fact validation. In 11th ISWC, pages 312–327. Springer, 2012.

[12] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P. N. Mendes,
S. Hellmann, M. Morsey, P. van Kleef, S. Auer, and C. Bizer. DBpedia - a large-
scale, multilingual knowledge base extracted from wikipedia. SWJ, 2014.

[13] X. Ling and D. S. Weld. Temporal information extraction. In 25th AAAI, 2010.
[14] M. B. Mehdi Samadi, Manuela Veloso. OpenEval: Web information query evalu-

ation. In 27th AAAI, 2013.
[15] S. Nakamura, S. Konishi, A. Jatowt, H. Ohshima, H. Kondo, T. Tezuka, S. Oyama,

and K. Tanaka. Trustworthiness analysis of web search results. In 11th ECDL,
2007.

[16] J. Pasternack and D. Roth. Generalized fact-finding. In 20th WWW, 2011.
[17] J. Pasternack and D. Roth. Making better informed trust decisions with general-

ized fact-finding. In 20th IJCAI, 2011.
[18] A. Rula, M. Palmonari, A. Harth, S. Stadtmüller, and A. Maurino. On the diver-

sity and availability of temporal information in linked open data. In 11th ISWC,
2012.

[19] P. P. Talukdar, D. T. Wijaya, and T. Mitchell. Coupled temporal scoping of
relational facts. In 5th WSDM, pages 73–82, 2012.

[20] C. Unger, L. Bühmann, J. Lehmann, A.-C. N. Ngomo, D. Gerber, and P. Cimiano.
Sparql template-based question answering. In 21st WWW, 2012.

[21] N. UzZaman and J. F. Allen. Trips and trios system for tempeval-2: Extracting
temporal information from text. In SemEval, pages 276–283. ACL, 2010.

[22] Y. Wang, M. Dylla, Z. Ren, M. Spaniol, and G. Weikum. Pravda-live: interactive
knowledge harvesting. In 21st CIKM, pages 2674–2676. ACM, 2012.

[23] X. Yin, J. Han, and P. S. Yu. Truth discovery with multiple conflicting information
providers on the web. IEEE Trans. Knowl. Data Eng., 20(6):796–808, 2008.


