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Abstract. DBpedia is a central hub of Linked Open Data (LOD). Being
based on crowd-sourced contents and heuristic extraction methods, it is
not free of errors. In this paper, we study the application of unsuper-
vised numerical outlier detection methods to DBpedia, using Interquan-
tile Range (IQR), Kernel Density Estimation (KDE), and various dis-
persion estimators, combined with different semantic grouping methods.
Our approach reaches 87% precision, and has lead to the identification
of 11 systematic errors in the DBpedia extraction framework.

Keywords: #eswc2014Wienand, Linked Open Data, DBpedia, Data Quality,
Error Detection, Outlier Detection, Clustering

1 Introduction

DBpedia [10] is a central hub of the Linked Open Data Cloud [2]. Its goal is
to make structured data from Wikipedia available to the Semantic Web. In
its current version,3 DBpedia4 contains information about more than 4.0 million
things, including 832,000 persons, 639,000 places, 372,000 creative works, 209,000
organizations, and 226,000 species.5

Given its approach of heuristic information extraction from a crowd-sourced
web site, DBpedia contains various kinds of errors [18]. Data is entered and
maintained manually in Wikipedia, and the input is neither restricted nor val-
idated automatically. This makes it prone to both factual errors and problems
during parsing, e.g., if number formats or units of measurement are used which
are not expected by the DBpedia extraction code.

While DBpedia deals with various kinds of information, given as classes,
instances, and relationships, this paper focuses on the detection of errors in the

3 DBpedia version 3.9, which has been released on September 17th, 2013
4 Unless otherwise indicated, all statements about the DBpedia knowledge base refer

to version 3.8. Many of the errors reported in this paper have been fixed for the 3.9
release due to the fact that we were able to identify them with methods discussed
in this paper.

5 http://dbpedia.org/About
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primitive numerical attributes, using outlier detection and clustering. That is,
given one property, such as dbpedia-owl:populationTotal,6 representing the
population of a place, we want to detect wrong values that are used as literal
objects of that property. We focus on unsupervised methods, i.e., methods that
do not use domain knowledge such as typical ranges of attributes.

Outlier detection is the method of finding an observation “that appears to
deviate markedly from other members of the sample in which it occurs.” [4] An
outlier may be caused by an error in the data, as well as represent an unusual,
but correct value. For example, in a series of country populations in the order
of magnitude of millions, a value larger than a billion may be wrong, or refer
to unusually large countries, such as China or India. However, in many cases,
outliers are caused by wrong data points. Therefore, outlier detection can be
used as a means to detect errors in data.

The rest of this paper is structured as follows. Our approach, as well as the
methods used for clustering and outlier detection, is sketched in section 2. We
show the evaluation of our approach in both a pre-study with a selection of
prominent attributes from DBpedia, as well as on a random sample of resources
in section 3, and we discuss systematic sources of errors identified in DBpedia
in section 4. We wrap up with a review of related approaches in section 5, and
an outlook on future work in section 6.

2 Approach

As discussed above, simple outlier detection approaches are limited by the exis-
tence of natural outliers. Consider a property such as dbpedia-owl:population-
Total, which represents the total population of a dbpedia-owl:PopulatedPlace.
This includes villages, towns, cities, states, countries, continents and – contrary
to the label – also some unpopulated places such as ghost towns and uninhab-
ited islands. That means that most countries and continents will appear to be
outliers by most metrics because they are only few in number, but exceed the
population of the villages, towns and cities, that make up the majority of the
entries, by far.

To cope with that problem, we propose a two-step approach: first, we group
the subjects by their types – in the example, separating villages, cities, countries,
etc. – and then apply outlier detection to those groups in isolation in order to
obtain a more robust error detection.

2.1 Grouping Subjects

Many resources in DBpedia have one or more types, which we can utilize to
separate subjects. The most basic way of doing that is to group the subjects of

6 The following namespace conventions are used in this doc-
ument: dbpedia=http://dbpedia.org/resource/, dbpedia-owl=

http://dbpedia.org/ontology/, dbpprop=http://dbpedia.org/property/,

owl=http://www.w3.org/2002/07/owl
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each property based on each RDF type found in the set of subjects. However,
not all types are actually useful for the outlier detection process and some are
actually detrimental.

Since in OWL everything is an instance of owl:Thing, the subset containing
all subjects of type owl:Thing will generally contain all subjects of the original
set and therefore not provide any further insight. The same can be true for other
types (e.g., dbpedia-owl:PopulatedPlace for dbpedia-owl:populationTotal),
so when grouping by single types, it is advisable to first check if the group repre-
sents a significantly smaller subset before applying any further outlier detection
methods.

Another problem to cope with is the presence of faulty types. Sometimes,
types are missing in DBpedia, in other cases, types are wrongly assigned. [12] A
typical example are the types dbpedia-owl:Village and dbpedia-owl:City,
which are not uniformly used: there are instances of dbpedia-owl:Village with
a population over 100,000 inhabitants, as well as instances of dbpedia-owl:City
with less than 10 inhabitants. Therefore, relying on single types for grouping the
subjects of examination can lead to problems.

Since the missing and wrongly assigned types are not equally distributed
across all schemas used in DBpedia (e.g., DBpedia, UMBEL, and YAGO), we
consider another preprocessing strategy, i.e., clustering by type vectors. For this
approach, we consider all types of a subject as a vector of boolean values, repre-
senting whether or not the subject is of a certain type, and then apply traditional
clustering techniques to subjects stored in this vector representation. To create
these vectors, we use the FeGeLOD framework [13], which is designed to auto-
matically enrich resources with information gathered from Linked Open Data.
FeGeLOD first collects the information for all subjects, creating a binary fea-
ture for each type. Then, we apply a threshold p to filter out features that are
either too generic, appearing in over p% of all cases, or too specific, appearing in
less than 1− p% of all cases. The actual clustering is done with the Estimation
Maximization (EM) algorithm [3], using the implementation in WEKA [5].

2.2 Outlier Detection Approaches

Classical outlier detection approaches assume an underlying distribution (usually
a normal distribution). The basic method of those classical approaches is that
values that do not fall into the assumed distribution are outliers.

However, those approaches are unsuitable for our purposes, because the data
we are dealing with often does not meet those assumptions. Most importantly,
the assumption of a normal distribution is not suitable for the vast range of
different datasets found in DBpedia. For example, the population sizes of cities
follow a log-normal rather than a normal distribution, i.e., there are many more
small cities than there are very large cities. Further problems arise with regards
to methods being designed for small sample sizes, or only being able to detect
one or a few outliers at a time.

More recent outlier detection approaches, which are not that dependent on
the assumption of a normal distribution, are based on robust statistics. One sim-
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ple such approach is based on the Interquartile Range (IQR). For this method,
three points are defined: the median of all values is the 2-quartile (Q2), the
median of those values smaller than Q2 is Q1, and the median of those values
larger than Q2 is Q3. The interquartile range IQR is then defined as the distance
between Q3 and Q1. Traditionally, every data point smaller than Q1− 1.5 · IQR
and every point larger than Q3 + 1.5 · IQR would be considered an outlier, as
this roughly corresponds to three standard deviations from the mean for a nor-
mal distribution. This approach can be generalized to use the distance between
arbitrary subdivisions of the data set, such as P95 − P5 for percentiles. Also,
for our purposes, we will need to use much larger factors than 1.5 due to the
heterogeneous nature of the data in DBpedia. The two main parameters of IQR
are thus the factor used, and the number of percentiles.

Other approaches are based on estimating the center of the distribution and
a range of assumed to be valid values. The median is the most common way
of estimating the center of the population. The range of valid values can be
estimated in various ways. The classic approach to estimating the dispersion of
a population in a robust way is the Median absolute deviation (MAD), defined as
MAD = mediani(|Xi −medianj(Xj)|). That is, we first calculate the distance
from each point to the median of the dataset and then take the median of those
values as the measure of dispersion. As for IQR, a constant factor determining
the allowed distance from the median for values considered as non-outliers is the
main parameter.

An approach to outlier detection that is not based on robust statistics uti-
lizes Kernel Density Estimation (KDE) [11]. Let x1, x2, ...xn be independent and
identically distributed (iid) random variables, drawn from a distribution with an
unknown density function f, then

fh(x) :=
1

nh

n∑
i=1

K(
x− xi
h

) (1)

is the kernel density estimator of f, where h is a smoothing factor called band-
width, and K is a so-called Kernel, a symmetric, non-negative function that
integrates to 1. For our purposes, we will use the Gaussian normal distribution,

1
σ
√
2π
e

−(x−µ)2

2σ2 , using the data sample’s mean (µ) and standard deviation (σ),

which satisfies all requirements of a kernel. The bandwidth h can be chosen ac-

cording to ”Silverman’s rule of thumb“ [14] as ( 4σ̂5

3n )
1
5 , where σ̂ is the sample

standard deviation. This bandwidth has been shown to yield optimal results for
cases where the underlying distribution is actually normal and reasonable results
for unimodal, symmetric distributions. [6]

To calculate outlier scores for a given dataset, we first create a KDE from
the data and then calculate the resulting probability at each point. To put this
probability into relation we compare it to the mean probability over all points,
mp = 1

n

∑n
i=1 f̂h(xi). The relative probability of one data point being normal

is then rp(x) = f̂h(x)
mp , where rp(x) > 1 indicates an above average probability,

rp(x) < 1 indicates a below average probability. To obtain a binary classification,
a threshold is applied, e.g., all x with rp(x) < 0.1 are considered as outliers.
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As näıve implementations that evaluate the KDE at every input point in-
dividually can be inefficient on large datasets, implementations based on Fast
Fourier Transformation (FFT) have been proposed. [15] Those implementations
allow sampling the function only at equidistant points, but offer a performance
that is orders of magnitudes faster than näıve implementations. A million sam-
ples can be evaluated in about one second, while evaluating the same number
of data points individually would take hours. However, rounding to the nearest
available sample usually leads to a loss in precision.

Furthermore, since KDE is not an inherently robust method, outliers can
affect the outcome. Thus, an iterative application of the approach, i.e., detecting
outliers with KDE, removing the outliers, and re-running the process on the
remaining data, often improves the results. [7]

3 Evaluation

We perform a two-fold evaluation. First, we conduct a pre-study with three
selected attributes. Then, we evaluate the performance of the best performing
methods on a random sample of DBpedia.

3.1 Pre-Study

We conduct a pre-study on three properties, dbpedia-owl:populationTotal,
dbpedia-owl:height, and dbpedia-owl:elevation, to assess their usefulness
with regard to typical data provided by DBpedia. These predicates were selected
due to their high coverage, as well as their diverse use (for example, height is
used for vehicles as well as for persons, which mixes two different distributions).

To conduct the study, we collected all triples that use the three proper-
ties as predicates. The three datasets encompass 52,522 (dbpedia-owl:height),
206,997 (dbpedia-owl:elevation), and 237,700 (dbpedia-owl:population-
Total) triples. While it would be too expensive to build a complete gold standard
for those datatsets, we only check whether the outliers identified by the different
approaches are true or false errors.

We evaluate according to two dimensions: the outlier detection method itself
(IQR, dispersion mode, KDE, iterative KDE, and KDE with FFT), as well as
the preprocessing technique (default, i.e., no preprocessing, grouping by single
type, as well as clustering by type vectors). For grouping by single types, we
use only classes from the DBpedia ontology that represent leaves of the class
hierarchy. Clustering by type vectors was done using the FeGeLOD framework
with a threshold of 0.95 to create the type vectors, which are then clustered
using the EM algorithm with a maximum of 100 iterations, no fixed number
of clusters to create, and a minimum allowable standard deviation of 10−6 for
normal density calculation. The reported results show the averages over all three
predicates. For each of the algorithms, a large number of parameter settings was
tested systematically.
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The runtime for one analysis run in default mode on the three datasets
were 1,832ms for IQR, 2,297ms for dispersion, 6,922ms for KDE-FFT, and
2,469,011ms (i.e., more than 40 minutes) for KDE. These runtimes include analy-
sis overhead one the one hand and some caching on the other hand so they should
only be viewed in comparison to each other, not as absolute values. In single type
mode, IQR takes 41,538ms, KDE-FFT 31,336ms and dispersion 72,852ms for one
sample run.

The clustering mode suffers from extremely high runtimes of around one hour
for the height dataset, and over 24 hours for the larger dbpedia-owl:elevation
and dbpedia-owl:populationTotal datasets. For those, about an hour is spent
creating the vectors, using the public DBpedia SPARQL endpoint for retrieving
the types, and the rest of the time running the actual clustering, which is the
bottleneck of this approach.

The results of the pre-study are depicted in Fig. 3.1. As we are interested in
methods for automatically detecting outliers, we were aiming at finding meth-
ods with high precision. Thus, we chose a set of parameters for each approach
which optimizes the trade-off of precision and total number of outliers in a way
that clearly prefers precision, such that if applied in an automatic setting, the
probability of removing correct information is low. To that end, we use those
parameters that optimize the trade-off between precision and absolute number
of outliers. It can be observed that the precision for both dispersion and KDE
FFT is much too low for the methods to be of actual use, since the loss induced
by rounding to the next available example is very high on the dataset at hand.

Grouping is obviously useful as no method is able to achieve more than
30% precision in the baseline default mode. On the other hand, both IQR and
KDE can yield precision scores of over 80%, if combined with some method
of grouping. The results of grouping by single types and clustering by type
vectors are comparable, which makes grouping by single type more preferable,
considering the high runtime of the clustering approach. Furthermore, we find
some improvement in precision for KDE by applying it iteratively to the same
dataset.

Looking at the total number of outliers that each method can detect, we
find that while IQR and KDE are able to achieve similar precision scores, KDE
is able to detect much more outliers than IQR. Indeed, KDE iterative default
detects 1622 incorrect values, most of which are incorrectly truncated values
of 1.52 meters in the dbpedia-owl:height dataset (see Fig. 3, albeit at a low
precision of 18%, as those values are too close to the valid range of body heights.
However, such frequent anomalies can be used to detect errors in the DBpedia
extraction code (see section 4).

3.2 Evaluation on Random Resources

Since the combination of IQR and grouping by single type provided some of the
highest precision scores (88%) as well as runtimes that seemed suitable for large
scale analysis, we chose to evaluate this combination further on a representative
sample from DBpedia. To construct that sample, we used 50 random resources as
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Fig. 1. Results of the pre-study on three selected properties. The x-axis shows the
different approaches. Precision is shown on the left y-axis, the total number of outliers
identified (true and false) is shown on the right y-axis.

a seed set, and collected all the data properties that have these resources as their
subject. For those properties, we selected all triples that have these properties
as their predicate, and used those for which more than 50% of all triples, and at
least 100 in total, could be parsed to numeric values. This lead us to a random
sample of 12,054,727 triples with literal, mostly numerical values.

As a first account, we used the parameters that had shown the highest pre-
cision in the pre-study (percentile=1.1, constant multiplier=50), and from that
starting point, we systematically evaluated different parameter settings. The ini-
tial parameter setting yielded 1,703 suspicious triples, which we then evaluated
manually. Manual verification was made feasible by using some shortcuts: The
outliers did not occur at random but in clusters. For example, we found 122
area codes with eight or more digits. Since US area codes are all three digits in
length, all triples with subjects of the form [place], [US state] (which made
up the vast majority) could be discarded at a glance. In some cases, however, we
were not able to confidently determine what a certain property is supposed to
represent and thus what values its objects should have. For example, the objects
of the property dbpprop:map are so diverse that it is hard to tell what exactly
they are supposed to represent. Thus, we labeled outliers for those properties as
“unknown”. Even if we pessimistically assume that all the outliers of unknown
status are actually correct, IQR achieved a precision of 81% on our random sam-
ple. After removing the unclear data points, the highest precision is achieved at
88% with 859 true positives and 108 false positives, using a constant multiplier
of 90 and 0.7 percentiles.
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We also applied the methods in default mode to the sample data, which
yielded nominally impressing results of thousands of outliers. The reason that
we can find so many more outliers in general is that in order for an outlier to be
found using the single type mode, its subject has to have a useful type, which is
by far not given for all resources in DBpedia [12]. In our random sample, only
two thirds of the subjects had at least one type.

Overall, three predicates, dbpprop:date, dbpprop:years, and dbpprop:post-

alCode, were responsible for the vast majority of those outliers. For those pred-
icates, identifying true positives is easy because years and dates with more than
four digits do not make sense, and the same holds for postcodes with more than
ten digits.

By merely counting the corresponding objects for those three predicates, we
would achieve true positive to unknown/false positive ratios of 7838:8751 (89%)
with dispersion (MAD, constant factor = 300,000) and 5917:7216 (82%) with
IQR (percentile = 1, constant multiplier = 41).

To verify that these results are not an effect of only a few low quality predi-
cates, we chose to evaluate on the higher quality dbpedia-owl namespace only
as well, which left us with 3,162,059 triples (26.2%) in 38 properties (22.6%) to
analyze. Since we are dealing with a subset, the number of true and false posi-
tives cannot increase. With the same set of parameters, we find fewer outliers,
but the overall trend remains, with 406 true positives (i.e., one wrong statement
is identified in a thousand statements), and a precision of 87%.

4 Error Analysis

Based on the results obtained in our quality evaluations, we further examined
common patterns in the errors we found to identify their causes. There are two
basic classes of errors: those that exist as factual errors in Wikipedia, and those
that occur while parsing the data from Wikipedia to DBpedia. Figure 2 shows
the distribution of the error sources we identified.

In the following, we provide examples and explanations for errors found with
our approach,7 roughly classified into errors in Wikipedia, problems parsing
primitive values, problems parsing non-primitive values, and problems interpret-
ing and converting units.

4.1 Errors in Wikipedia

In some cases, the data is already wrong at the source, i.e. the Wikipedia page.
For example, the page http://en.wikipedia.org/wiki/Lerma, State of Mex-

7 Note that since our study was performed on DBpedia 3.8, all examples shown refer
to that version. Since, as a result of the research reported in this paper, we reported
these errors to the DBpedia development team during our investigation, some of
those have already been fixed for the latest DBpedia release, so not all of those
errors can be reproduced with the latest version of DBpedia. Likewise, some of the
examples for wrong data in Wikipedia used in this paper may have been fixed since
this paper has been written.
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Fig. 2. Distribution of error sources. The value for Imperial Conversion is 1,506; the
y-axis has been cut off at 100 for providing a better visualization.

ico gives the elevation of a town in Mexico as 25,700m 84,300ft, which is clearly
a wrong elevation, as it would be roughly three times higher than Mount Ever-
est. These errors are hard to quantify, as they do not seem to follow a specific
pattern.

In other cases, the correct data exists at Wikipedia along with another in-
correct value, and the wrong value is selected during the extraction of DBpedia.
For example, the page http://en.wikipedia.org/wiki/Portland, Michigan

gives the elevation of this town as 30,035ft (221m). 221 meters would be the
correct value, but the DBpedia extraction code picks up the incorrect elevation
in feet and converts it to the value of 9154.67 meters.

Some infobox keys in Wikipedia are used with inconsistent semantics. One
example is the property dbpprop:runtime. Used for TV shows, it most often
denotes the runtime of a single episode, while in some cases, it denotes the total
time the series was aired. For example, the series Wielie Wielie Walie, a South
African children’s program, was aired for 18 years. The running time 18 years
is then transformed to a runtime of 568,036,800 seconds.

4.2 Problems Parsing Primitive Values

In this paper, we concentrate on numerical data. Such data can be obtained
from primitive (simple numbers) as well as non-primitive (several numbers in one
value, e.g., a population value and a year in which the population figures were
collected) values. One problem in an earlier version of the DBpedia extraction
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code was that some characters were converted to additional zeros in numbers.
For example, dbpedia:Durg gives the population of the city of Durg as 2810436,
when it really is 281,436. A similar error can be seen with regards to the city of
Nantong (dbpedia:Nantong). DBpedia gives the population as 72828350, while,
according to Wikipedia, it is actually 7,282,835.

Another class of problems comes from misinterpretation of wrong thousands
and decimal separators.8 For example, the comet 1134 Kepler (dbpedia:1134
Kepler) has an eccentricity of 0.4650, which is given in Wikipedia as 0,4650, and
gets misinterpreted to 4650 in DBpedia. Similarly, there are cases where dots
are used as a thousands separator, e.g., for the city dbpedia:Garg%C5%BEdai,
which has a population of 16,814, defined as 16.814 in Wikipedia, which, after
rounding, becomes a population of 17 in DBpedia.

4.3 Problems Parsing Non-Primitive Values

The most prominent indicator of non-primitive values is the presence of an ad-
ditional number in the value. This happens, for example, with a year given for
another value, such as a population. For example, the population of the village
Semaphore (dbpedia:Semaphore, South Australia) is given as 28,322,006

(which exceeds the total population of Australia), when it is actually 2,832 –
here, the year 2006 is reported next to the population, and the two numbers get
concatenated during the extraction. A similar phenomenon can be observed for
some runtimes, e.g., the runtime of the song Last Christmas, which is given as
3:02 (1946 recording) in Wikipedia, and misinterpreted as 1,946 seconds.

A similar case is the presence of different numbers (e.g., ranges) for one
property. This occurs, for example, with area codes, which are frequently given
as lists or ranges, for example, Wikipedia gives the area code of Central Cal-
ifornia as 805, 559, 831, which the extraction code turns into 805559831 at
dbpedia:Central California. Since Wikipedia entries can contain arbitrary
text where a proper number may be expected by the DBpedia extraction code,
entries such as Mid-90s may also be misinterpreted, leading to the starting date
of 90 A.D. for the band Depswa (dbpedia:Depswa).

In some cases, double information is extracted from more than one place. For
example, the Wikipedia article for Johnstown, Colorado (http://en.wikipedia
.org/wiki/Johnstown, Colorado) gives its population as 9,887. However, in
the introduction, a population of 3,827 in 2000 is also mentioned. The two
values get concatenated, so that in DBpedia (dbpedia:Johnstown, Colorado),
we find a combination of those two values as 38,279,887.

4.4 Problems Interpreting and Converting Units

There are properties which use different units of measures. For example, the
runtime of films (dbpprop:runtime) usually uses time intervals, such as hours,

8 As we only look at the English language Wikipedia, these should in theory be free
from regional variations.
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Fig. 3. Distribution of persons’ heights, showing an anomaly at 1.52m.

minutes, and seconds, and is represented in DBpedia as seconds. However, there
are also films such as the 1919 movie The Unpardonable Sin, whose runtime is
given as 9 reels (2,700 meters), which is converted to 9 (i.e., nine seconds) in
DBpedia (dbpedia:The Unpardonable Sin (1919 film)).

Another typical problem can occur with height or length values that are re-
ported in mixed notation, using the unit of measurement in the middle. This
leads to the meter cut off problem: a set of people with actual heights of around
1.5-1.9 meters have their heights represented in DBpedia as exactly 1.0 meters.
This does seem to happen most often with somewhat unclean height specifi-
cations in Wikipedia. For example, Wikipedia states the height of the foot-
baller Guy Poitevin as 1 m 81, 80 kg, which then gets interpreted as 1.0m at
dbpedia:Guy Poitevin.

The by far largest source of errors happens during conversion of imperial
units. In many cases, the given value differs only between about 0.025 and 0.3
meters from the actual value. In most cases the given height equals a round
number of feet. For persons, the most common incorrect height is 1.524 meters
or 5 feet; for example, the goalkeeper Ray Wood (dbpedia:Ray Wood) is 1.80
meters in height according to Wikipedia, but DBpedia gives his height as 1.524
meters. This indicates that this error is caused by an incorrect parsing procedure
from Imperial units to metric units where only the value in feet is correctly read
while the remaining inches are cut off. Such errors can be observed as frequent
anomalies in the distributions, as shown in Fig. 3.

The interpretation of values in metric units is also not free of errors. In some
cases, heights appear too small by a factor of one hundred. For example, the
correct height for dbpedia:Humberto Contreras would be 1.76 meters accord-
ing to Wikipedia, however, DBpedia gives a value of 0.0176 meters, since the
extraction code expects a value in centimeters, not meters. A similar error can
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be observed with regards to some resources that have their height given in mil-
limeters at Wikipedia, e.g. http://en.wikipedia.org/wiki/FS Class E491/2

states the height of this locomotive as 4,310 mm (14 ft 1.7 in), which is ren-
dered as 0.004310 [meters] at DBpedia. However, in other cases, the error is
already present in Wikipedia. For example, the height of athlete Katrina Porter
(http://en.wikipedia.org/wiki/Katrina Porter) is given as 1.55cm, which
DBpedia correctly converts to 0.0155 meters.

It may also occur that imperial units are interpreted as metric, or vice versa.
For example, Wikipedia gives the elevation of Shadow Mountain Lake as 8367’
(8367 ft.), which DBpedia misinterprets as 8,367 meters, thus causing the parsed
value at dbpedia:Shadow Mountain Lake to be about three times (1 meter =
3.28084 feet) higher than it actually is. The entry on the Zapatoca mountain
(dbpedia:Zapatoca) features even two of those errors: Wikipedia gives the el-
evation as 1,720 m (4,000 ft), and DBpedia renders this as both 1219.200000

and 13123.000000. The first value corresponds to converting 4,000ft to meter
and the latter to converting 4,000 meter to feet.

Time values are also prone to misinterpretation. Wikipedia lists the runtime
of some albums as mm:ss:msms, for example http://en.wikipedia.org/wiki/
Les Dudek (album). The DBpedia extraction codes interprets this as hh:mm:ss
and converts it to 2589.1666666666665 [minutes] at dbpedia:Les Dudek (album).

5 Related Work

In [18], a taxonomy of errors in LOD is introduced. The taxonomy consists of four
dimensions (accuracy, relevancy, representational consistency, and interlinking),
seven categories, and 17 sub-categories. It encompasses plain errors, such as
incorrectly extracted triples, as well as undesirable features, such as information
being redundant or irrelevant. The errors found by the approach discussed in
this paper mainly fall into the first category, i.e., incorrectly extracted triples.

The problem of automatically detecting errors in knowledge bases automati-
cally has been acknowledged to be hard. In [16], an approach is evaluated of first
enriching the DBpedia ontology with additional domain and range restrictions,
as well as class disjointness axioms, and then using the enhanced ontology for
error detection by reasoning. A similar approach is discussed in [8], but no quan-
titative results on DBpedia are provided. However, these two approaches target
at finding wrong statements involving object properties, i.e., relations between
two resources, rather than wrong numerical literals.

Other approaches use external knowledge to validate statements, either from
experts or from external data sources, and with different scopes (e.g., validating
both object and data type properties vs. only data type properties). [1] discuss
crowd-sourcing, using platforms such as Amazon Mechanical Turk which pay
users for micro-tasks, such as the validation of a statement. Furthermore, they
used a custom platform which organized the validation of statements as a com-
petition. Their evaluation concentrates on three error classes, i.e., wrong literal
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values, wrong literal datatypes, and wrong interlinks to other datasets. For the
first, which we also address with our approach, they report a precision of 0.90,
which is close to our results, which, however, does not rely on the wisdom of the
crowds. [17] use games with a purpose to evaluate DBpedia and spot inconcisten-
cies. They report that in 4,051 statements used in the game, 265 inconsistencies
have been detected by users, 121 out of which were actually inconsistencies.
This leads to a precision of only 0.46, which makes that approach only partially
suitable for increasing data quality, at least without expert reviewing.

External knowledge is used, e.g., by DeFacto [9]. The authors have build
a pattern library of lexical forms for properties frequently used in DBpedia.
Using those lexical patterns, DeFacto runs search engine requests for natural
language representations of DBpedia statements. While DeFacto seems to work
on ObjectProperties, not DatatypeProperties, the approach is transferable to the
problem of identifying errors in numerical data as well. Their approach reaches
a precision of 0.88, which is comparable to our approach.

Overall, there are not too many approaches for automatically identifying
wrong numerical values in Linked Open Data, in particular not without using
external sources of knowledge, such as the wisdom of the crowds. Furthermore,
it is interesting to see that even approaches using external knowledge sources do
not reach significantly higher precision figures.

6 Conclusion and Outlook

In this paper, we have examined the possible usage of different outlier detection
methods, i.e., Interquantile Range (IQR), Kernel Density Estimation (KDE),
and dispersion estimators, for identifying wrong statements in DBpedia. The
outlier detection methods are combined with different preprocessing strategies,
i.e., grouping subjects by the single types, as well as clustering by type vectors.
The simple IQR method delivers some of the best results in our tests. Combined
with grouping by single type preprocessing, we achieved a precision of 87% on
small high quality samples as well as on large random samples. Basic KDE shows
similar results, but suffers from high runtimes. The other methods examined, i.e.,
dispersion and KDE-FFT, mostly fail to deliver results with sufficient precision.

The evaluation has shown that exploiting further semantics in DBpedia, i.e.,
the type information of the statements’ subjects, leads to an improvement com-
pared to simply applying outlier detection to all numerical values of a property
at once. Clustering by type vectors does produce promising results as well but
is, at least in our current implementation, not feasible runtime-wise. Iterative
application of analysis methods does not improve results for most methods. Only
KDE clearly benefits from using more than one iteration; with all other meth-
ods, results either do not change or, if they were bad to begin with, tend to get
even worse. Overall, the combinations of IQR and iterative KDE, and grouping
by single type or clustering by type vector, produce the best results.

As a result of applying our approach, we identified a number of common
sources of errors in DBpedia. Large amounts of the faulty numerical values in



14 Dominik Wienand and Heiko Paulheim

DBpedia are caused by only a few of those error sources. Overall, 11 different
types of errors in the DBpedia extraction framework regarding properties in
the dbpedia-owl namespace were identified and forwarded as bug reports to
the developers of DBpedia, many of which have been resolved for the current
DBpedia release. While we were identifying these errors by manual inspection,
automatically detecting patterns for data formats that are not handled correctly
would be a useful extension of the approach.

So far, we have only considered numerical data, i.e., integer or double values.
Extending the approach to dates would be interesting, straight forward, and
particularly useful, since dates, like numbers, are prone to being parsed wrongly.

While the clustering approach showed promising results, but had runtime
problems, there is clearly room for improvement here. We evaluated one cluster-
ing approach on RDF types, which showed promising results but suffered from
extremely high runtimes. However, there is an abundance of clustering algo-
rithms, and there is much more information available for each subject beyond
its type that could be used in the clustering process, e.g., vectors of relations
or Wikipedia categories. Other feature vector representations, combined with
different clustering algorithms, could improve the clustering results as well as
runtime.

In general, outlier detection as a method of identifying errors has some fun-
damental limitations in that in order for an erroneous data point to be detected,
it has to be “outlying” in some numerical manner. For example, if all regular ZIP
codes have five digits, it should be possible to detect invalid ZIP codes with 3 or
14 digits. However, if a ZIP code is simply wrong as in 96377 instead of 94303,
it will be practically impossible to detect as an outlier without using background
knowledge.

In this paper, we have restricted ourselves to applying outlier detection meth-
ods on single attributes. While the results are promising, using more than one
variable at the same time seems promising, e.g., finding outliers in cities’ popula-
tions by taking the area attribute into account (assuming that cities with larger
population also occupy a larger area).

So far, we have only considered one particular data source, i.e., DBpedia.
While the approach itself is transferable to any RDF knowledge base, exploiting
links to other datasets and using information from more than one dataset at the
same time could help further improving the results. By comparing suspicious
values to corresponding values from other sources, e.g., other language editions
of DBpedia, it could not only be possible to detect more outliers, but also to
correct them automatically too. Applying the findings not only on DBpedia, but
also on Wikipedia directly, e.g., in the form of editing support, would be another
possible application.

In summary, we have shown that even basic outlier detection methods, com-
bined with suitable preprocessing strategies, lead to highly effective error detec-
tion mechanisms.
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