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Abstract In this paper we analyse the sensitivity of twelve prototypical Linked
Data index models towards evolving data. Thus, we consider the reliability and
accuracy of results obtained from an index in scenarios where the original data
has changed after having been indexed. Our analysis is based on empirical ob-
servations over real world data covering a time span of more than one year. The
quality of the index models is evaluated w.r.t. their ability to give reliable estim-
ations of the distribution of the indexed data. To this end we use metrics such
as perplexity, cross-entropy and Kullback-Leibler divergence. Our experiments
show that all considered index models are affected by the evolution of data, but
to different degrees and in different ways. We also make the interesting observa-
tion that index models based on schema information seem to be relatively stable
for estimating densities even if the schema elements diverge a lot.

Keywords: #eswc2014GottronTC

1 Introduction

Thanks to the Linked Data movement, the Web of Data has reached a point where bil-
lions and billions of RDF statements are publicly available. Many applications leverage
this valuable resource of information and consume, analyse, present, interlink or pro-
duce new data on the Web. The fact that Linked Open Data (LOD) is provided in a dis-
tributed fashion across many different data sources motivates the need for approaches
to index and cache data on the Web. These indices are used, for instance, to facilitate a
fast lookup of data sources on the Web, which provide data with certain characteristics,
to federate distributed queries, to estimate result set sizes or for caching data locally for
faster access.

Along with the lively growth of the Web of Data comes a certain degree of develop-
ment, maintenance and, thus, dynamics of the data. Data is not anymore just published
in a static fashion, but more often and more frequently, data is updated, extended, re-
vised and refactored. Recent investigations in this direction revealed substantial fluctu-
ations and dynamics of LOD under various aspects and for various data sources [10,1].

These changes in evolving Linked Data are a challenge to index structures. Indices
become outdated and—as a consequence—might provide incomplete or wrong inform-
ation. So far, the sensitivity of index models towards evolving data has not been ana-
lysed. Therefore, in this paper we will take a first step in this direction, propose an ap-
plication independent evaluation approach and perform an empirical survey of twelve
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different prototypical indexing models and how they behave over evolving Linked Data.
The index models are taken from related work and cover a substantial part of different
application scenarios, methods and index granularities.

Our analysis is based on an empirical evaluation using real world data of weekly
snapshots of Linked Data over a period of more than one year. We use implementations
of index models to estimate densities for the distribution of the data. Density estimates
are central to several applications, e.g. result set size estimation [12], query optimisa-
tion for federated querying [2], information theoretic analysis of LOD [4] or statistical
schema induction [16]. Furthermore, densities have the advantage of being applica-
tion and domain independent. As such they are suitable for a generic evaluation of
index models and their sensitivity towards evolving data. For measuring the divergence
between a distribution estimated over an index and the distribution estimated from data
which has evolved since the creation of the index, we use metrics like perplexity, cross
entropy and Kullback-Leibler divergence as well as the Jaccard-similarity over the set
of index key elements. Based on these metrics we can see how stable the index models
are over evolving data. While all index models are affected by changes in the data, we
also make the interesting observation that index structures based on schema informa-
tion seem to be relatively stable for estimating densities. This is surprising given that
the underlying schema information is diverging a lot.

The rest of the paper is structured as follows. We start with a survey and unified
formalisation of index models in Section 2. Subsequently we describe how we estimate
densities of data distributions from these indices. In Section 4 we present our evaluation:
the experimental setup, the applied metrics as well as an overview and discussion of the
results. Thereafter, we survey research that is related to our work before we conclude
the paper in Section 6.

2 Index Models for Linked Data

In recent years, various index models over LOD have been proposed. Many of them
focus on specific aspects of the data or are dedicated to support application specific
tasks. The index models in this paper have been selected on the basis of covering a wide
range of methods and different levels of granularity. Before going into the details of the
models we will briefly introduce a formalisation framework that helps us to describe
index models in a unified, application and implementation independent way.

In the context of LOD, we assume data to be available in the form of RDF triples
and to be spread across different data sources. Thus, we can assume the atomic data
items to be in the form of quads (s, p, o, c) where s, p, and o correspond to the subject,
predicate and object of the RDF triple statement and c provides the context, i.e. the data
source on the Web where this statement was published. Formally, we consider the sets
of all possible URIs U , blank nodes B and literals L. Then in a quad (s, p, o, c) the
subject s ∈ U ∪B can be a URI or a blank node, the predicate p ∈ U a URI, the object
o ∈ U ∪B ∪ L a URI, a blank node or a literal and the context c ∈ U a URI.

Thus, we assume an index model for LOD to operate on a data set R of (s, p, o, c)
quads. Depending on the application scenario, the index model will typically not serve
to store all information of the quads. Rather it will define a derived set D of managed
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data items which typically constitutes a constraint of the quads to smaller tuples. In this
paper we consider two different types of data item sets: (1) the set DSPO := {(s, p, o) |
∃c : (s, p, o, c) ∈ R} of full RDF triples and (2) the set DUSU := {s | ∃p, o, c :
(s, p, o, c) ∈ R} of all unique subject URIs (USUs). The data items in DSPO are typic-
ally used in a context where an index is based on using a part of the quad information
(e.g. the object) to look up matching triple statements (e.g. the subject or the predic-
ate). DUSU, instead is typically used in index models where information from several
statements (e.g. a set of several RDF types) is used to look up a specific entity URI.

Furthermore, an index model has to define a set K of key elements which are used
to lookup and retrieve data items. These key elements are used as domain for a selection
function σ : K → P(D) to select a subset of the data items in the index. In the context
of this paper we consider only data structures for which the selection function σ is
operating solely on information provided by the Linked Data set R and does not make
use of external information or additional meta data (e.g. provenance information).

Accordingly we define an abstract index model as a tuple (D,K, σ) of the stored
data items D, the key elements K used for the lookup index and the selection function
σ to retrieve data from the index.

2.1 Triple Based Indexing

A very common approach for indexing RDF data is to use the three entries in the triples,
i.e. the URIs filling the subject, predicate and object positions in the RDF statements.
Such indices can be used to retrieve all statements affecting an entity in a subject or
object position as well as all statements expressing a certain relation. Implementations
of this index model can be found in RDF data stores as well as in a combined fashion
such as the QTree index [8]. As data items we assume the full triple to be of interest,
thus, we use DSPO.

Subject Index: IS := (DSPO,KS , σS), where:
– Key elements: KS := {s ∈ U | ∃p, o, c : (s, p, o, c) ∈ R}
– Selection function: σS(k) := {(s, p, o) | s = k}

Predicate Index: IP := (DSPO,KP , σP ), where:
– Key elements: KP := {p ∈ U | ∃s, o, c : (s, p, o, c) ∈ R}
– Selection function: σP (k) := {(s, p, o) | p = k}

Object Index: IO := (DSPO,KO, σO), where:
– Key elements: KO := {o ∈ U | ∃s, p, c : (s, p, o, c) ∈ R}
– Selection function: σO(k) := {(s, p, o) | o = k}

2.2 Index Models Based on Meta Data (Keywords, Source)

Another common type of index makes use of meta data, e.g. the context or textual
descriptions and labels used in triple statements. The textual descriptions for entities
provide easy to understand descriptions which help human users to interpret the data.
Accordingly, index models based on this information are of particular interest for HCI
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scenarios. Index structures in this context hardly use a full literal as key elements for
indexing, but rather apply term based relevance scores and retrieval methods. Thus, the
key elements are terms w taken from a vocabulary VR of observed words in the literal
values of RDF statements inR. To obtain realistic indices we apply common techniques
from the field of Information Retrieval, such as case folding and stemming. As queries
we assume single term queries, which form the basis for more complex and combined
queries in a typical Information Retrieval setting.

Keyword Index: Ikeyword := (DSPO,Kkeyword, σkeyword), where:
– Key elements: Kkeyword := {w | w ∈ VR}
– Selection function: σkeyword(k) := {(s, p, o) | o ∈ L ∧ k contained in o}

Index models focusing on the context in the quads, i.e. the source providing the
information on the Web, are geared more towards settings where the provenance of a
statement is of importance (e.g. for evaluating the credibility of information or to be
able to consult the original publisher).

Context Index: IC := (DSPO,KC , σC), where:
– Key elements: KC := {c | ∃s, p, o : (s, p, o, c) ∈ R}
– Selection function: σC(k) := {(s, p, o) | (s, p, o, k) ∈ R}

In this setting, rather than considering a concrete context URI, data is sometimes
aggregated per pay level domain (PLD)1 to better reflect the authorities behind the
published data. Such an aggregation of data is used in various contexts, among which
Linked Data analysis, e.g. in [10]. Defining the function pubSuffix to provide the PLD
for a given URI, a PLD level index can be defined as follows:

PLD Index: IPLD := (DSPO,KPLD, σPLD), where:
– Key elements: KPLD := {pubSuffix(c) | ∃s, p, o : (s, p, o, c) ∈ R}
– Selection function: σPLD(k) := {(s, p, o) | (s, p, o, c) ∈ R ∧ pubSuffix(c) = k}

2.3 Schema Level Indexing

Several index models use schema level information to organise RDF data. Most of these
models use joint information from several triple statements to provide a schema level
description for entities. These descriptions then serve as key elements. Thus, we will
use the set of USUs DUSU as data elements for these index models.

The assignment of classes to entities is of relevance in many contexts. It allows for
specifying a categorial identification of entities and is used in various applications. As
key elements both of the following is considered: URIs used as objects in statements
with an rdf:type predicate as well as URIs which are specifically modelled to be a class

1 The pay level domain consist of the public suffix (e.g. .org, .co.uk) and the preceding
domain name. It represents the level at which Internet users can directly register names and
is thus a good estimate for an authority responsible for Linked Data. We obtained the list of
public suffixes from http://publicsuffix.org/list/.

.org
.co.uk
http://publicsuffix.org/list/
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themselves.

RDF Type Index: IT := (DUSU,KT , σT ), where:
– Key elements: KT := {o | ∃s, c : (s, rdf:type, o, c) ∈ R} ∪ {s | ∃c : (s, rdf:type,

rdfs:Class, c) ∈ R}
– Selection function: σT (k) := {s | ∃c : (s, rdf:type, k, c) ∈ R}

A variation to this index model is to form groups of types which jointly describe an
entity [9]. These type sets characterise an entity more specific and precise.

RDF Type Set (TS) Index: ITS := (DUSU,KTS, σTS), where:
– Key elements: KTS := P(KT )
– Selection function: σTS(k) := {s | (∀t ∈ k : (∃c : (s, rdf:type, t, c) ∈ R)) ∧
∀(s, rdf:type, o, c) ∈ R : (o ∈ k)}

An analogous extension to indexing individual predicates is to consider the set of
predicates used to describe the properties of a specific entity. This property set (some-
times also referred to as characteristic set) provides a more specific description of the
entity. Such index models are used for accurate result set size estimations when query-
ing distributed RDF data stores [12] or for generating SPARQL queries to feed into
federated querying testbeds [3].

Property Set (PS) Index: IPS := (DUSU,KPS, σPS), where:
– Key elements: KPS := P(Kp)
– Selection function: σPS(k) := {s | (∀p ∈ k : (∃o, c : (s, p, o, c) ∈ R)) ∧
∀(s, p, o, c) ∈ R : (p ∈ k)}

In the context of statistic schema induction [16] also the set of incoming properties
is considered. This corresponds to the set of predicates which all affect the same object
in RDF triple statements.

Incoming Property Set (IPS) Index: IIPS := (DUSU,KIPS, σIPS), where:
– Key elements: KIPS := P(KP )
– Selection function: σIPS(k) := {o | (∀p ∈ k : (∃s, c : (s, p, o, c) ∈ R)) ∧
∀(s, p, o, c) ∈ R : (p ∈ k)}

The combination of property sets and type sets leads to the definition of extended
characteristic sets (ECS). ECS based index models constitute a more extensive ap-
proach to schema level indexing as they combine both type and property information.
Such index models have been used for measuring redundancy in schema information
on the LOD cloud [4,5] and for measuring dynamics of LOD on a schema level [1].

Extended Characteristic Set (ECS) Index: IECS := (DUSU,KECS, σECS), where:
– Key elements: KECS := P(KP ∪ KT )
– Selection function: σECS(k) := {s | (∀p ∈ k∩KP : (s ∈ σPS(p)))∧(∀t ∈ k∩KT :
(s ∈ σTS(t)))}

While ECS based index models already address a lot of the schema information en-
coded in LOD, there exist models which make use of yet more complex and more fine
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grained structures to capture schema information. SchemEX as a schema level index
for querying distributed Linked Data falls into this category [9,7].

SchemEX Index: ISchemEX := (DUSU,KSchemEX, σSchemEX), where:

– Key elements: KSchemEX := P(KTS × P(KPS ×KTS))

– Selection function: σSchemEX(k = (ts, E)) := {s | s ∈ σTS(ts) ∧ ∀(ps, ts2) ∈ E :
(s ∈ σPS(ps) ∧ ∃o ∈ σTS(ts2) : (∀p ∈ ps : (∃c : (s, p, o, c) ∈ R))}

3 Index Based Estimates for the Distribution of Data Elements

We implemented2 the index models presented in Section 2 to estimate density func-
tions over key elements. This means, we estimate how probable it is for an element to
belong to one specific index key k and—conversely—the amount of data obtained when
querying the index for this key element k.

Depending on the type of index model, we look up the distribution of triples or
USUs over the index structure. If we consider the distribution over an index I =
(D,K, σ), this effectively corresponds to modelling a random variable X taking val-
ues of the key elements K. The density we estimate is the distribution of this random
variable X . This means we need to determine the probability P (X = k) for each entry
k ∈ K to be associated with a data item. To estimate the densities we use the count
information of data elements associated with the key elements in an index. This corres-
ponds to using a maximum likelihood estimation to derive a distribution, i.e.

P (X = k) =
|σ(k)|∑

k′∈K |σ(k′)|
(1)

where σ(k) indicates the result set obtained from an index when querying for a
specific key element k.

As we are considering evolving data it is highly likely that the set of key elements is
not stable but evolving itself. Thus, it can happen that certain key elements will disap-
pear as the data evolves (i.e. there are no more data items for that index entry) or might
come up as novel, previously unseen key elements. For instance we might encounter
new combinations of properties which spawn new property sets in an IPS implementa-
tion. As we are interested in comparing densities over our indices we need to consider
the effect of such zero-size entries. Using a maximum likelihood estimation for the
densities would lead to zero probabilities for certain events which renders comparis-
ons of densities impractical. We apply smoothing to overcoming zero probabilities. We
make use of Laplace smoothing which adds a small constant value of λ to all counts
obtained for the number of results |σ(k)|. The parameter λ was set to 0.5 in our experi-
ments.

2 The implementation of the index models has been released under an open source license at
https://github.com/gottron/lod-index-models.

https://github.com/gottron/lod-index-models
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Figure 1. Evaluation of index stability: we built indices at different points in time over an evolving
data set. The deviation in the distribution is measured by comparing the initial distribution to the
distributions of the evolved data.

4 Experiments: Measuring Deviation of Index Models over
Evolving Data

In our experiments, we empirically evaluate how accurate are density estimates obtained
from implementations of index models over evolving data. To this end we build an index
over the data at an initial point in time and obtain its distribution from the index. Then
we compare this distribution to densities estimated over the same data at later points in
time, when the data has potentially undergone changes. Figure 1 illustrates this process.

4.1 Metrics

We are comparing estimates of the density function for distributions of Linked Data
items in an index structure. Common metrics to compare density functions are cross
entropy, Kullback-Leibler divergence and perplexity. We briefly review the definitions
of these metrics and explain their interpretation.

Assume we have estimated two probability distributions P1(X) and P2(X) at dif-
ferent points in time over an evolving data set. Then the cross entropy is defined as:

H(P1, P2) = −
∑
k∈K

P1(X = k) log(P2(X = k)) (2)

In the context of compression theory, cross entropy can be interpreted as the av-
erage number of bits needed to encode events following the distribution P1 based on
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an optimal encoding scheme derived from P2. If the two distributions are equivalent,
then cross entropy corresponds to the normal entropy H(P1). The entropy of P1 also
provides a lower bound for cross entropy. Based on this interpretation, the Kullback-
Leibler divergence gives the deviation in entropy (or overhead in encoding) relative to
the entropy for P1 and is defined as:

DKL(P1, P2) = H(P1, P2)−H(P1) (3)

Therefore, if two distributions are equivalent, they have a Kullback-Leibler diver-
gence of zero. This is a desirable feature for our evaluation as it renders the comparison
of distributions of evolving data independent from the different levels of the entropy
observed for different index structures.

Perplexity, instead, provides an evaluation of a distribution by giving the number
of events which under a uniform distribution would have the same entropy value. As
such it is considered to be more easily interpretable by humans than the somewhat
abstract entropy values. Perplexity itself is defined over entropy values, though. Here
we formulate it directly on the basis of cross entropy:

PP (P1, P2) = 2H(P1,P2) (4)

Perplexity is a standard metric for evaluating probabilistic models. The lower the
perplexity is, the better a model explains observed data and the more truthful are its es-
timates of the probabilities. When looking at perplexity over the cross entropyH(P1, P2)
in particular, there is also another interesting interpretation of the values. If perplexity
is higher than the number of events considered, then using a simple uniform distribu-
tion instead of P2 would correspond to a better approximation of the distribution P1.
Furthermore, the interpretation of perplexity relative to the event space allows for a nor-
malisation. The normalised perplexity PPnorm is defined as PP

|X| , where |X| denotes the
size of the event space.

In addition to the metrics for comparing the density estimates, we use the Jaccard-
similarity over the set of key elements. Let K1 and K2 be the sets of key elements
derived at two points in time. Then the Jaccard-similarity is defined as:

Jaccard(K1,K2) =
|K1 ∩ K2|
|K1 ∪ K2|

(5)

A higher similarity value indicates a larger overlap between the sets of key elements
while a low value indicates a stronger deviation. In this way we can get an impression of
how stable the set of elements used for indexing is in the different indexing approaches.

To summarise: cross entropy provides an impression of the evolution of the absolute
density, Kullback-Leibler divergence the deviation from the initial density, perplexity
gives a more human interpretable view on the changes in the entropy values and the
Jaccard-similarity allows for an assessment of the stability of the set of key elements
used for indexing.
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4.2 Data Set

We use the Dynamic Linked Data Observatory [11,10] data set. The data set provides
weekly crawls of LOD data sources starting from always the same set of seed URIs. The
initial snapshot from the 6th of May 2012 contains 16,376,867 RDF triples and covers
a wide range of data sources. The data is provided in the form of quads containing the
RDF statement as well as the source URI, where the triple was crawled from. Thus, it
suits our formal requirements for the index models. Details on the design considera-
tions, implementation and crawling strategy for the data set can be found in the original
publications.

We used 77 data snapshots from the 6th of May 2012 up to the 8th of December
2013 for our experiments. The data was fed as raw input to implementations of all the
twelve indexing models, without any further pre-processing3.

4.3 Results

We will now look at the performance of the different indexing models w.r.t. to the
metrics measuring the ability to truthfully estimate density functions over evolving data.

We start to look at the development of cross entropy over time. The plots in Figure 2
show the result for the triple (Figure 2(a)), metadata (Figure 2(b)) and schema based
index models. For the schema level index models we differentiate between the simpler
models in Figure 2(c) and the ECS and SchemEX models making use of more extensive
schema information in Figure 2(d). We can see nicely the different entropy levels for
the individual indices. The explanation for this are more skewed distributions of the
data in the index structures as well as different sizes of the key element sets. We can
also observe some impacts of the evolving data on the entropy levels. The increase is
not monotone, but shows some fluctuations over time. This can be attributed, on the
one hand, to the data not shifting away homogeneously from its original distribution.
On the other hand, such a behaviour can also be explained with the limited availability
of certain data sources over time. As seen in previous analysis of the same data set,
some data sources were not always available at all moments in time, causing a shift in
the distribution due to the lack of the corresponding data and to peaks in the observed
plots. Note, that this is not a flaw in the data set as it reflects a realistic scenario on the
Web.

When looking at the Kullback-Leibler divergence in Figure 3, it can be seen how the
deviations from the initial values develop. For most indices the development is behav-
ing comparable in the sense that deviations appear approximately at the same points in
time with the same direction of the deviations (this can be seen quite nicely for the triple
and metadata based indices in Figure 3(a) and 3(b)). Two exceptions are the keyword
based index, which has a much more stable behaviour in general, and the context based
index, which exhibits an increase in Kullback-Leibler divergence around week 60. The
stability of density estimates obtained from the keyword index are conceptual. As the

3 Please note that SchemEX [9] is typically computed using an approximative, highly efficient
stream-based approach. While in general the results of this approach are of high quality [6]
we want to make sure it does not introduce a bias in the analysed index structures. Thus, we
decided to compute precise, truthful and lossless SchemEX indices.
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Figure 2. Evolution of cross entropy for densities estimated over index structures.
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Figure 3. Evolution of Kullback-Leibler divergence for densities estimated over index structures.
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Table 1. Average and maximal perplexity of indices over evolving data

Index S P O C PLD Keyword T TS PS IPS ECS SchemEX

Size Key Set 3,665,267 11,554 2,887,357 68,665 746 1,057,790 11,154 25,727 35,985 12,555 89,252 118,473

Max. PP 4,237,601 421 368,459 59,888 107 5,837 1,201 140 919 611 4,699 8,632
Max. PPnorm 1.156 0.036 0.128 0.872 0.143 0.006 0.108 0.005 0.026 0.048 0.053 0.073

Avg. PP 3,148,052 230 83,438 25,758 38 3,660 506 42 380 342 2,430 2957
Avg. PPnorm 0.860 0.020 0.029 0.375 0.051 0.003 0.045 0.002 0.011 0.027 0.027 0.025

index effectively operates over single words as key elements, the density corresponds
to a unigram language model. Given that the domain of the data did not change, we can
hypothesise that the language style and domain remained relatively stable. The explan-
ation for the increase in divergence of the context index around week 60, instead, lies
in the data set. Investigating the data closer, revealed that at this point in time one par-
ticular data source (taxonconcept.org) started to contribute a significantly higher
amount of triples than before. Thus, the strong impact on the context index.

The quality and stability of the density estimations can best be seen in the plots of
the perplexity values in Figure 4. Again, we can observe a big difference in the absolute
values. The overall highest values are observed for the subject based index. We can
see in Figure 4(a), that the perplexity of this index increases relatively homogeneously
and reaches it maximal value around week 70. Also several other indices show a more
or less steady increase in perplexity. The simpler schema level indices in Figure 4(c),
however, are relatively stable—with the exception of a few high peeks. The peeks align
again with the unavailability of some data sources. In Figure 4(d) it is interesting to
observe, that the perplexity of SchemEX is comparable to the one of the ECS index.
This is surprising as SchemEX conceptually is more complex than the ECS and uses
more extensive schema patterns. However, it seems with the more fine-grained schema
level model it can better distinguish between the parts which have evolved and those
which have remained stable. Therefore, also the density estimation is more reliable.

Table 1 provides an aggregated view on perplexity. The table lists information about
the maximal and average perplexity values as well as normalised perplexity. There, we
can see, for instance, that the maximal value of the subject based index corresponds to a
perplexity value of 4,237,601. Given the initial size of the key element set of 3,665,267,
the normalised entropy at this point in time reaches a values of 1.156. Thus, assuming a
simple uniform distribution of the key elements would provide a more accurate estima-
tion of the distribution. It remains to be said, though, that the distribution of the subject
key elements in the analysed data set is in fact relatively close to a uniform distribution.

More interesting is the insight which can be obtained from the average normalised
perplexity values in Table 1. Here, the single peeks of perplexity due to unavailable
data sources have a lower impact. Furthermore, the normalisation renders the values
comparable over all indices. We observe, that all schema level indices have very low
values. This underlines the stability of these indices. Also, we can see again the keyword
based index to have a low average normalised perplexity. Both observations align with
the impression we obtained from the analysis of the Kullback-Leibler divergence.

taxonconcept.org
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Figure 4. Evolution of Perplexity for densities estimated over index structures.
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Figure 5. Evolution of the Jaccard-similarity over the index element sets.
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Finally, when looking at the evolution of the set of key elements over time in Fig-
ure 5, we can get some additional insights. While the similarity between the sets of key
elements decreases more or less steadily for the triple and meta data based index mod-
els, it drops to relatively low values for several schema based models quite immediately.
Most models drop to a Jaccard-similarity of 0.5 and below already after 10 weeks. The
SchemEX index even drops to values of approximately 0.2. However, from a low over-
lap in the set of key elements we can not judge the overall quality of the index, as it is
not clear how many data items are affected by the changed key elements. As we have
seen before when looking at perplexity, SchemEX seems to cope very well in capturing
and distinguishing patterns that are more or less stable. Thus, even if some of the key
elements with very few associated data entries disappear, the effect on the estimates of
densities is relatively low.

Quite interesting is also the observation that the deviations in the key elements set
in IPS index seem much lower than for the IP index. This, however is an artefact of
the data set and how it is generated. Given that the data set essentially corresponds to a
crawl of a fixed set of seed URIs, we naturally get a change of all the modelled subject
entities and their properties. For the objects, instead, we can only observe changes in
the incoming relations from the considered subjects in the seed set. We cannot observe
changes for those objects on the rest of the LOD cloud. On an unbiased data set, we
would expect the two types of indices to behave comparable. This, however, remains to
be verified.

5 Related Work

The changes and dynamics of Linked Data have been investigated in several publica-
tions. Umbrich et al. [15] give a good survey and provide a distinction between dynam-
ics on the document and entity level. The Dynamic Linked Data Observatory data set
has been introduced in [10]. It was analysed for changes in the data regarding triples,
USUs, volume per data source, availability of the data on the Web (i.e. reachability of
URIs) etc. The analysis showed a varying degree of changes in the data depending on
the features considered. An extension of the analysis towards the schema level of LOD
was presented by Dividino et al. [1]. A more detailed analysis of schema information
revealed that also the schema level is heavily affected by the change in the data. The no-
tion of schema elements in [1] is based on an ECS index model. However, all analytics
focus on changes and dynamics on the side of the data. To the best of our knowledge,
the impact of the changes on the accuracy of index models has not been analysed so far.

Index models and index structures for Linked Data or RDF in general are discussed
in various contexts. Driven by the obvious need to index, cache and query distributed
data, a wide range of solutions and applications have been proposed. We covered rel-
evant publications in Section 2 when introducing the index models. However, when
analysing index models most work considers mainly the efficiency of index structures
for retrieving data or their effectiveness in a specific application context [13,14]. In
these scenarios it is usually considered normal, that the index is aware of all changes
in the data and is updated accordingly. Few publications consider index structures that
are not always accurate. The motivation is either a more efficient computation of the
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index over large scale data [9] or a distributed scenario where not all data is under the
control of the authority managing the index, e.g. when federating SPARQL queries [2].
However, also in these cases the loss of accuracy has so far only been analysed for static
data sets [9,6].

6 Conclusions and Future Work

In this paper we addressed the impact of evolving Linked Data on the accuracy of in-
dex models in providing reliable density estimations. Answering this question plays
an important role given that, on the one hand, density estimations are central to sev-
eral applications and that, on the other hand, Linked Open Data has been shown to
be quite dynamic and evolving under several aspects. We formalised and implemented
twelve prototypical index models from related work and evaluated their accuracy in
estimating the density over evolving data. Employing metrics for comparing probabil-
ity distributions we empirically analysed how far the densities obtained from an index
diverged from the actual distributions in the evolving data. We observed that all dens-
ities estimated from implementations of the index models diverge from the densities of
the evolving data. The divergence increases over time and particular events in the data
caused stronger deviations for specific index models. For instance, models based on the
data source were affected stronger by a burst and increase in the data volume provided
by one specific data source. Finally, we also observed that models based on schema
information seem to provide relatively stable estimations.

As future work we will investigate index specific strategies for performing evalu-
ations of their own accuracy and corresponding update plans. This will include sampling
strategies to identify the degree of data changes without considering the full data set.
Furthermore, we will investigate more detailed methods for analysing the accuracy of
index models when it comes to responding to concrete queries. The challenge in this
case will be to provide representative queries, which cover all aspects of the data and
how to deduce the overall change rate of the data from the divergence of query results.
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