
Towards a Data Warehouse fed with Web
Services

John Samuel

LIMOS, CNRS, Blaise Pascal University, Aubière, France
samuel@isima.fr

Abstract. The role of data warehouse for business analytics cannot be
undermined for any enterprise, irrespective of its size. But the grow-
ing dependence on web services has resulted in a situation where the
enterprise data is managed by multiple, autonomous service providers.
The goal of our work is to investigate and devise an approach to ad-
dress the trade-off between scalability and adaptability in large scale
integration with numerous ever-evolving web services. We present our
prototype DaWeS (Data warehouse fed with Web Services) and explore
how ETL using the mediation approach benefits this trade-off for enter-
prises with complex data warehousing requirements. The semantic web
research community has proposed various standards like WSDL, WADL,
hRESTS, SAWSDL for describing web service interface (API) the usage
of which could have solved our requirement of automated integration.
DaWeS looks to fill the current gap between the industry and research
community by taking into account the key characteristics of the afore-
mentioned description languages and using a declarative approach in
order to reduce the manual effort. We also present to the semantic web
research community the optimization heuristics (to reduce the API oper-
ation calls) and semantic challenges (auto-adaptability especially in the
wake of an API change) devised while building DaWeS.

Keywords: #eswcphd2014Samuel

1 Introduction

The growing dependence on the internet has influenced the rise of many small
service providers offering a reduced subset of services over the internet compared
to the traditional bloated computer softwares and applications. Enterprises de-
pendent on the web services have their business data spread across multiple data
centers spanning even across continents leaving them with no direct control over
the web services and the associated data infrastructure and thus their own busi-
ness data. Web mashups and Data as a service (DaaS) have appeared in large
numbers to provide integration with some selected web services in order to pro-
vide a consolidated view of the data spread across the web services. A classical
approach is to write wrappers for each such web service for extracting the rele-
vant information. But this approach is not scalable especially if the integration
is targeted towards thousands of web services.

Extracting data from web services (WS) has several constraints. The WS
providers generally expose the application programming interface (API) to their
services so that their clients (enterprises) can build their own internal dash-
boards. The APIs differ significantly among each other with respect to the re-
sources they handle, the resource representation, the data types, the number of
operations, the service level agreements or SLA (that limits the number of opera-
tions that can be made during a period of time), the authentication mechanisms
(for access by enterprise and third party users), the choice of message formats
and the operation request and response (or error) parameters. In addition to
these, WS periodically modify their API: adding support for new resources, dep-
recating some operations or changing the SLA. Therefore the clients often have
to deal with this volatility in the interfaces often forcing them to change their
service providers or their internal applications. Therefore enterprises require a
solution to be able to have an integrated view of their business data spread across
multiple web services and experience a transparent continuity of their data even
when they switch their service providers or when WS API undergoes a change.

Our research work looks at the problem of large scale integration with the
ever-evolving web services for business analysis in providing a scalable and adapt-
able solution towards this end. The solution must be scalable i.e., considering
the ever-increasing availability of new web service providers in the market, it
must be very easy to add a new API with minimum coding effort. It must be
quickly adaptable (easy update of API changes) in the wake of the versatility (or
evolution) of WS. Also it must be able to manage huge and permanent storage
of enterprise data coming from the WS. In addition to providing certain default
performance indicators, it must be very easy to define new ad-hoc performance
indicators that totally avoids hard coding. Last but not the least, it must offer
a way for the enterprise to keep track of its business data, even if one of its
providers is no longer available.

To address the problem previously described, we propose (and build) a Web
services fed Data Warehouse. In section 2, we describe the current state of the
art. Section 3 describes the problem and present our contributions. Section 4
describes our research approach used in our prototype DaWeS (Data Warehouse
fed with Web Services). Section 5 describes the results obtained. We also dis-
cuss various scientific challenges especially in terms of dealing with reducing the
number of (expensive) API operartion calls, handling incomplete information
and dynamic evolution of the warehouse. Section 6 discusses how to evaluate
our results. Finally in section 7, we will discuss our ongoing and future course
of actions and summarize our results.

2 State of the Art

We want to offer enterprises a lightweight but powerful and online data anal-
ysis tool. So this is basically an information integration problem. Information
Integration Systems [25, 5] provides a uniform query interface across multiple
heterogeneous and autonomous systems.

In this field, two approaches are well studied, namely the materialized and
the virtual ones. A materialized information integration system often used for
the purpose of data analysis and business performance measures computation is
called a data warehouse (DW). A DW contains a copy of source data structured
according to a single global schema. Many ETL(extraction-transform-load) tools
have been studied [23] to clean and extract data from various data sources and
transform them to a format according to the data warehouse schema and loading
them to the DW. A majority of the works have dealt with extracting the data
from existing legacy data stores (databases, spreadsheets, web pages, textual
documents) in the form of of data wrappers [20], which are ad-hoc specific pieces
of software to translate from the DW to the source and vice versa. It is sensible
to code such specific wrappers since DW sources are usually stable. The typical
example is when a big company builds a DW to analyze data coming from its
various departments. In our tool, enterprise data comes from multiple sources
(services), and they must be persistent in case of a service provider failure. So
it is clearly a DW issue. The problem is that services are supposed to be quite
unstable in time. So it is not realistic to build a specific wrapper for each source.

The virtualized information integration approach, referred to as the medi-
ation approach, also structures sources’ data into a single global schema, but
without copying data. Sources’ data indeed stay at the sources. The purpose of
a mediator is more query answering than data analysis. User queries are for-
mulated over the global schema, transferred to sources, and the query answers
coming from the sources are then gathered by the mediator and presented to
the user. There are mainly three ways of linking the data sources to the global
schema: the Global As View (GAV) [5] Local As View (LAV) [7, 22] and Global
Local As View (GLAV) [10]approaches. In GAV, each relation of the global
schema is defined as a query over the source relations. In LAV, each source re-
lation is defined as a query over the global schema relation. GAV mediators are
known to offer good query answering properties, while facing an evolution in the
sources may be difficult (e.g., adding a new source implies to potentially updat-
ing many relation definitions in the global schema). LAV mediators are known
to easily handle source changes, while query answering is algorithmically more
difficult. Indeed, the user query posed to the global schema must be rewritten
into queries that can be posed to the source. And rewriting algorithms have a
high complexity (NP-Complete at least). In GLAV, the global and local schema
relations are mapped using a set of tuple generating dependencies (TGDs). LAV
is easier than GLAV with respect to an algorithmic point of view. Despite the
complexity of rewriting algorithms, using a LAV approach as ETL seems to be
interesting for our DW. Indeed this DW has to be easily adaptable when sources
(services) evolve. And that cannot be provided by GAV approaches. Obviously,
this work has to be located in the field of WS. [14, 26] deals with data inte-
gration using WS, in the context of WSs using the various standards like XML,
HTTP, SOAP, WSDL, UDDI. Our proposition can be seen as an implementation
addressing more specifically the content and relationship aggregation [14] issues.

Many existing tools and standards concerning WS can be used to build (parts
of) a DW fed with WS. They can be divided into the syntactic and the semantic
ones. The most prominent syntactic ones are WSDL [24] and hRESTS [17] (both
machine and human readable). The idea is that a machine readable interface for-
mat can enable automatic code generation and then automated WS integration
(discovery, composition, etc.). But industry wide adoption is currently missing:
majority of the WS APIs is described in human readable format (essentially
HTML web pages) and are not meant for the direct consumption by software
applications. This may be due to standards that are still in their infancy, to
the effort based on these standards cannot handle every real situation. [21, 1]
use web service composition [9] for creating data as a service (DaaS) and WS
mashups based on web service standards.

Concerning semantic web technologies and ontologies, several works [19] dis-
cuss about integrating semantic web technologies (ontologies) to the WS for eas-
ier and automated information integration. DAML-S [6], OWL-S [18], SAWSDL
(Semantic Annotations for WSDL and XML Schema) [13] and hRESTS are
some examples of such semantic WS description languages. These approaches
already provides techniques to automate integration in constrained contexts. In-
deed, thanks to their formal semantics, they’re adapted to automate integration
issues (e.g., automatic matchmaking of services with respect to a user query).
Moreover it is now known that the underlying formalisms, especially description
logics, can be used to extend query answering to ontological query answering
[3, 11]. We believe the industrial acceptance will increase in the upcoming years
and our proposed solution can reap the benefits of these technologies for a fully
automated integration.

3 Problem Statement and Contributions

The goal of our work is to investigate and devise an approach for a scalable and
adaptable solution to the problem of integrating data coming from a large num-
ber of WS using their API, that also reduces the coding effort required for data
integration. Towards this direction, we brought forth the notion of the classical
LAV mapping (with access patterns) to describe the WS API operations. Web
service APIs are thus considered as the data sources, and viewed as relational
sources with access patterns (to translate the presence of input and output pa-
rameters) [22]. “Translators” must be coded to present each API operation as
a relational source with access pattern to ensure the translation between API
and the global schema. Translators can be viewed as light-weight and declara-
tive wrappers made operational by a single generic wrapper. For every domain
(example: project management), a global schema is set up. Queries are then de-
fined on the global schema to link with an API operations viewed as relational
sources with access patterns. Records can be defined as queries on the global
schema (records can be viewed as atomic performance indicators). Performance
indicators can be defined as queries on the schema composed by record predi-
cates.

As said before, we claim that our approach of using mediation as an ETL
is interesting since mediation with LAV-approach is known to fit data integra-
tion problems when relational views are evolving, so fitting well with the scal-
ability objective. Mediation is known to be a declarative process since it uses
databases query languages like datalog and conjunctive queries which are declar-
ative. Therefore it also fits our adaptability objective, since it allows to reduce
the coding effort (e.g., defining a new performance indicator is simply an SQL
query, adding a new operation implies to code the “translator” and then add a
mapping) To compute a record, only a generic wrapper is needed (coded once
for all). No need to code one wrapper for every new source.

Project
pid
src

pname
pstatus

Task
tid
src

name
tstatus
tcdate

Local schema
S={BCProject,

BCTask,
TWProject,
TWTask}

Global schema
G={Project,Task}
Virtual Schema
No Data Stored

Mapping (LAV) as Conjunctive Queries

BCProject {ff}(p, n) ← Project(p, 'BC', n, s).

BCTasks{f}(t) ←
Task(t, 'BC',tn,ts,d).

BCTask{bfff}(t, tn, ts, d) ←
Task(t, 'BC',tn,ts,d).

TWProject{fff}(p, n, s) ← Project(p, 'TW',n, s).

TWTask{ffff}(t, tn, ts, d) ←
Task(t, 'TW', tn, ts, d)

s(Ig)

Record Definition Q
Get all Projects

ans(p, s,n) ←
Project(p,s, n,ps)

ans

pid
tid

tname

BCProject
ff

pid
pname

BCTask
bffff

tid
tname
tstatus
tcdate

S5Project

G
H

TWProject
fff

pid
pname
pstatus

TWTask
ffff

tid
tname

tstatus
tcdate

BC: Basecamp
TW: Teamworkpm
f: output attribute
b: input attribute

 Materialized Data
 Enterprise Records

Web Service API calls
used to obtain the Local Schema

Data

Query Rewriting R

Project(p, 'BC', n, fsBCP (p, n)) ←
 BCProject {ff}(p, n).

Project(p, 'TW', n, s) ←
TWProject{fff}(p, n, s).

ans(p, s, n) ←
Project(p,s, n,ps)

Fig. 1. Mediation approach using Local as View (LAV) Mapping.

Example 1. Consider the domain Project Management that manages mainly two
resources, Project and Task; hence two global schema relations:

Project(pid, src, pname, pstatus) and Task(tid, src, tname, tstatus, tcdate).
and two WS: Basecamp1 and Teamwork2. We consider here a simplified ver-
sion of their API operations. Basecamp provides two operations related to task:
the first operation provides all the task identifiers and the second requires the
task identifier as input to give the complete task details. This information is cap-
tured by the access patterns. Consider LAV mapping BCTaskiooo(t, tn, ts, td)←
Task(t,′ BC ′, tn, ts, td). It corresponds to the fact that the operation BCTask
takes as input the task identifier t and gives the details of the task (name, status
and creation date. The operation has been mapped to the global schema relation
Task with source value as BC to signify Basecamp, its source. Now consider a
record definition q: Get all Projects, (a conjunctive query formulated over the
global schema). q(pid, src, pname) ← Project(pid, src, pname, pcdate, pstatus).

1 http://www.basecamp.com 2 http://www.teamworkpm.net

The query rewriting generated by the inverse rules algorithm generates queries
using the WS API operations that are then used for the actual calls. The medi-
ation approach for this example is described in Fig. 1.

4 Research Methodology and Approach

Our research methodology relies on the implementation of our approach to data
integration and warehousing in a prototype, that can then be validated and
evaluated against the requirements expressed above. We built the first version
of the data warehouse, DaWeS handling every essential aspect required to make
use of the WS API to extract information. The basic underlying architecture of
DaWeS is shown in Figure 2. The component Enterprise Record Computation,
is responsible for computing the enterprise records. It takes as input the record
definition (query formulated over the global schema relations) and makes use of
the answer builder to execute the query. Answer builder consists of a (datalog)
query engine, that executes the query plan obtained by rewriting the query
according to the inverse rules algorithm [7, 8].

Fig. 2. DaWeS: Basic Architecture.

We use the inverse rules algorithm given its capability to handle recursive
datalog queries, handling access patterns in the source relations and to specify
full and functional dependencies in the global schema relation (we used this ca-
pability to specify the primary keys). The generic HTTP WS wrapper is used
to make the WS API operation calls and transform the response in a manner
understood by the answer builder. The wrapper is generic since it can make any
HTTP WS API operation call given the right URL, valid input and authenti-
cation parameters (in HTTP header and/or body). A response validator serves
to validate the response before performing any transformation and to catch any
unannounced (or unexpected) response schema changes. We also used cache with

the wrapper in order to reduce the number of API operation calls so that any
subsequent use of an operation call makes use of the cached response. On the
completion of the datalog query evaluation, the query response is saved in the
database to be later used by Enterprise Performance Indicator Computation
component to compute interesting business measures.

During the course of the development of DaWeS, we identified various scien-
tific locks. Reducing the number of expensive (bandwidth and cost perspective)
API operation calls is important. The domain rules do not take into account any
functional dependencies existing among the input attributes of an API opera-
tion. Suppose there is a functional dependency t→ p between project identifiers
p and task identifiers t, two input attributes for an API operation (e.g., in Fig-
ure 1, if BCTasks is replaced by BCTasksoo(p, t) and BCTask is replaced by
BCTaskiiooo(p, t, tn, ts, td). If there are 10 p and 20 t, the domain rules gen-
erated result in 200 (10×20) BTask API calls (and not 20) because domain
rule generate the following r.h.s domp(p), domt(t), BCTaskiiooo(p, t, tn, ts, td),
where domp(p) and domt(t) are the abstract domains corresponding to project
identifier and task identifier respectively. Secondly, classical query rewriting algo-
rithms [12] including inverse rules algorithm are shown not to be able to generate
any rewritings for such queries. Thirdly, WS evolve and currently there are no
standard mechanisms to track when an API (or an operation) is deprecated or
changed. Fourthly, expecially considering the multi-domain WS environment,
new global schema relations (especially when a domain of service has to be
added) and LAV mappings updations occur regularly. Therefore contrary to the
traditional warehouse settings, there is a dynamic evolution of the data sources,
the warehouse schema, the queries formulated over the mediated schema and
the performance indicators defined using these queries (for new domains).

5 Intermediate Results

DaWeS was tested with Intel(R) Pentium(R) Dual CPU @ 2.16GHz processor,
system memory of 3GiB, Ubuntu 13.04 (32 bits) operating system, Oracle 11g
(11.2.0.1.0) database and was developed and run using Java 1.7.0 25. We chose
IRIS (Integrated Rule Inference System) [15] as the datalog engine to perform
query evaluation. We configured IRIS to make use of the generic HTTP WS
wrapper capable to make WS API operation calls to any web service.

We considered different domains and the associated WS APIs. For every
WS API operation, we required the input and output parameters, the XSD [2]
schema of the response and XSLT [16] to extract interesting information from the
response. Various record definitions (mediated schema queries) were considered
and the enterprise records (query responses) were stored in two tables.

We developed heuristics to deal with the scientific locks discussed before.
First, in order to handle functional dependencies existing among two or more in-
put attributes of a source relation, we implemented a static optimization heuris-
tics by considering only valid input values (obtained from previous operations).
Dynamic optimization [4] for this problem has been proposed recently. Secondly,

a more recent paper [12] has shown the capability of inverse rules mechanism to
handle incomplete information. We implemented this into DaWeS making use
of the functional terms generated during inverse rules rewriting. Finally, we use
a XML response validator to identify any unexpected API changes. We periodi-
cally compute certain records and compare the obtained response to the expected
response (calibration). Response validator and calibration are our current semi-
automatic error handling mechanisms to trigger a manual intervention on the
event of WS evolution. DaWeS database employs two tables each for describing
the mediated schema, the data sources, the mediated schema queries and the
performance indicator queries, the enterprise records and performance indicator
values. Advanced analytics queries like OLAP (used in conjunction with the star
schema) under these settings is an open database research question.

6 Evaluation Plan

Our approach will be evaluated based on the requirements indicated previously,
through measuring performance at different scales and the reduction in cod-
ing effort compared to other state of the art approach in data integration and
ETL. We already performed various qualitative and quantitative experiments on
DaWeS. We created 100 test organizations to simulate a multi enterprise envi-
ronment. Following are the twelve different WS considered from three different
domains; Project management services: Basecamp, Liquid Planner3, Teamwork,
Zoho Projects4. email marketing services: MailChimp5, Campaign Monitor6,
iContact7. support/ helpdesk services: Zendesk8, Desk9, Zoho Support10, User-
voice11, FreshDesk12. We took into consideration 35 different operations of the 12
WS having the following characteristics: required no input arguments, required
one or more input arguments or required paginated requests.

Fig. 3. DaWeS: Record Computation Time.

The queries formulated over
the global schema consisted of
a mix of (union of) conjunctive
queries, and (recursive) datalog
queries. We considered the follow-
ing record definitions (queries),
each computed on a Daily basis:
New Projects(1), Active Projects
(2), On-Hold Projects(3), On-
Hold or Archived Projects(4),
New Tasks(5), Open Tasks(6),
Closed Tasks(7), Todo-Lists(8),

3 http://www.liquidplanner.com
4 http://www.zoho.com/projects
5 http://www.mailchimp.com
6 http://www.campaignmonitor.com
7 http://www.icontact.com

8 http://www.zendesk.com
9 http://www.desk.com

10 http://www.zoho.com/support
11 http://www.uservoice.com
12 http://www.freshdesk.com

Same Status Projects(9), New Fo-
rums(10), All Forums(11), New
Topics(12), New Tickets(13), Open Tickets(14), Closed Tickets(15), New Cam-
paigns(16) and Campaign Statistics(17). Twenty performance indicators were
defined using SQL queries and record predicates. Example performance indica-
tor queries include average resolution time of tickets during the last 30 days. An
average (Mean) Time of 104.82 seconds was taken to compute all the records of a
single organization. Without incomplete data handling heuristics, many queries
would have remained unanswered.

Figure 3 shows the time taken to compute the records using the WS API
operations serially. The spikes point the situations when data is not available
locally in the cache and the API operations have to be made. Use of cache and
the proposed heuristics helped us to reduce the number of API operation calls,
without which it takes too much time (many hours at least). Currently we are
working on the precise semantics of the conjunctive query with access patterns
in order to quantify (or predict) the number of API operation calls. This will
help us to drive our heuristics to a complete algorithm.

7 Conclusion

Mediation as an ETL approach is very useful for building a WS fed data ware-
house. Given its scalable and adaptable nature, it can be easily adapted by
small and medium scale enterprises considering the minimum amount of coding
effort while handling WS API. Inverse rules query rewriting used in conjunction
with our proposed heuristics is useful to handle access patterns in the sources,
data dependencies on the global schema, recursive datalog queries, incomplete
information and optimize the number of expensive API operation calls.

DaWeS has been tested with real web services. Our further extensions include
automatic error handling with an error ontology (e.g., to handle API changes,
temporary API failures), adding more constraints in the form of TGDs to the
global schema to get close to the kind of constraints used in the ontological query
answering, but keeping recursive queries and defining the precise semantics of
conjunctive queries with (or without) access patterns.

Given the interest of cloud computing within the industry, our current ap-
proach of storing the complete WS API enterprise data on just two big tables
can be easily adapted to the cloud infrastructure. Also we want to design the
system to avoid the complexity so that it may be more widely adopted than
SAWSDL or other such standards.

Acknowledgement I thank the Conseil General of the Region of Auvergne
(France) and FEDER for funding our research project. I also thank Christophe
Rey and Farouk Toumani of LIMOS, Blaise Pascal University, Franck Martin
and Lionel Peyron of Rootsystem for their guidance and feedback for DaWeS.

References

[1] Benslimane, D., Dustdar, S., Sheth, A.P.: Services mashups: The new generation
of web applications. IEEE Internet Computing 12(5), 13–15 (2008)

[2] Bray, T., Paoli, J., Sperberg-McQueen, C.M., Maler, E., Yergeau, F.: Extensible
markup language (xml). World Wide Web Journal 2(4), 27–66 (1997)

[3] Cal̀ı, A., Calvanese, D., Lenzerini, M.: Data integration under integrity con-
straints. In: Seminal Contributions to Information Systems Engineering, pp. 335–
352. Springer (2013)

[4] Cal̀ı, A., Calvanese, D., Martinenghi, D.: Dynamic query optimization under ac-
cess limitations and dependencies. J. UCS 15(1), 33–62 (2009)

[5] Chawathe, S., Garcia-Molina, H., Hammer, J., Ireland, K., Papakonstantinou,
Y., Ullman, J., Widom, J.: The tsimmis project: Integration of heterogeneous
information sources. In: In Proceedings of IPSJ Conference. pp. 7–18 (1994)

[6] s Coalition, D., Ankolekar, A., Burstein, M., Hobbs, J.R., Lassila, O., Martin, D.,
Mcdermott, D., Narayanan, S., Mcilraith, S.A., Paolucci, M., Payne, T., Sycara,
K.: Daml-s: Web service description for the semantic web (2002)

[7] Duschka, O.M., Genesereth, M.R.: Answering recursive queries using views. In:
PODS. pp. 109–116 (1997)

[8] Duschka, O.M., Genesereth, M.R., Levy, A.Y.: Recursive query plans for data
integration. J. Log. Program. 43(1), 49–73 (2000)

[9] Dustdar, S., Schreiner, W.: A survey on web services composition. INTERNA-
TIONAL JOURNAL ON WEB AND GRID SERVICES 1(1), 1–30 (2005)

[10] Friedman, M., Levy, A.Y., Millstein, T.D.: Navigational plans for data integration.
In: AAAI/IAAI. pp. 67–73. AAAI Press / The MIT Press (1999)

[11] Gottlob, G., Schwentick, T.: Rewriting ontological queries into small nonrecursive
datalog programs. In: KR. AAAI Press (2012)

[12] Grahne, G., Kiricenko, V.: Towards an algebraic theory of information integration.
Inf. Comput. 194(2), 79–100 (2004)

[13] Group, S.W., et al.: Semantic annotations for wsdl, w3c working draft. The World
Wide Web Consortium (W3C) (2006)

[14] Hansen, M., Madnick, S.E., Siegel, M.: Data integration using web services. In:
Lacroix, Z. (ed.) DIWeb. pp. 3–16. University of Toronto Press (2002)

[15] IRIS: Integrated Rule Inference System - API and User Guide (2008), http:

//www.iris-reasoner.org/pages/user_guide.pdf

[16] Kay, M., et al.: Xsl transformations (xslt) version 2.0. W3C Recommendation 23
(2007)

[17] Kopecký, J., Gomadam, K., Vitvar, T.: hrests: An html microformat for describing
restful web services. WI-IAT ’08, IEEE Computer Society (2008)

[18] Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., McIlraith, S.,
Narayanan, S., Paolucci, M., Parsia, B., Payne, T., et al.: Owl-s: Semantic markup
for web services. W3C member submission 22, 2007–04 (2004)

[19] Noy, N.F.: Semantic integration: A survey of ontology-based approaches. SIG-
MOD Record 33, 2004 (2004)

[20] Roth, M.T., Schwarz, P.M.: Don’t scrap it, wrap it! a wrapper architecture for
legacy data sources. pp. 266–275. VLDB ’97 (1997)

[21] Truong, H.L., Dustdar, S.: On analyzing and specifying concerns for data as a
service. In: Kirchberg, M., Hung, P.C.K., Carminati, B., Chi, C.H., Kanagasabai,
R., Valle, E.D., Lan, K.C., Chen, L.J. (eds.) APSCC. pp. 87–94. IEEE (2009)

[22] Ullman, J.D.: Information integration using logical views. Theor. Comput. Sci.
239(2), 189–210 (2000)

[23] Vassiliadis, P., Simitsis, A.: Extraction, transformation, and loading. In: Encyclo-
pedia of Database Systems, pp. 1095–1101. Springer US (2009)

[24] W3C: Web Service Description Language 1.1 (2001), http://www.w3.org/TR/

wsdl

[25] Wiederhold, G.: Mediators in the architecture of future information systems. Com-
puter 25(3), 38–49 (Mar 1992)

[26] Zhu, F., Turner, M., Kotsiopoulos, I.A., Bennett, K.H., Russell, M., Budgen,
D., Brereton, P., Keane, J.A., Layzell, P.J., Rigby, M., Xu, J.: Dynamic data
integration using web services. In: ICWS. IEEE Computer Society (2004)

