
Popular Books and Linked Data: Some Results
for the ESWC’14 RecSys Challenge

Michael Schuhmacher, Christian Meilicke

Research Group Data and Web Science, University of Mannheim
{michael,christian}@informatik.uni-mannheim.de

Abstract. Within this paper we present our contribution to Task 2 of
the ESWC’14 Recommender Systems Challenge. First we describe an
unpersonalized baseline approach that uses no linked-data but applies a
naive way to compute the overall popularity of the items observed in the
training data. Then we describe an algorithm that makes use of several
features acquired from DBpedia, like author and type, for item repre-
sentation and comparison. Furthermore we leverage Wikipedia links and
keywords found within the Wikipedia abstract. Item recommendations
are generated by a mixture-model of Naive Bayes classifiers that have
been learned on user neighborhood clusters with classifiers learned glob-
ally on training data. While our Linked-Data-based approach achieves an
F1 measure of 0.5607, the increase over the popularity baseline remains
surprisingly low.

1 Introduction

Within this paper we describe the methods we developed for participating in
Task 2 of the ESWC’14 Linked Open Data-enabled Recommender Systems Chal-
lenge1. For Task 2, the aim was a top-5 item recommendation per user, based
on a training dataset with binary ratings. For each user, a relatively small set
of books, on average 11.00 (min 0, max 20), to select from was already given.
Assigning a score to each item-user pair defines an ordered list from which the
top-5 ranked items for each user are interpreted as recommendations.

The training dataset consisting of 72,371 user-book-rating tuples was given,
with 6,181 distinct users and 6,733 distinct books. The evaluation/test dataset
contains the same 6,181 users, consequently for every user at least one training
data recommendation was available. However, out of the 6,903 unique books
in the test data, 939 have not been observed before in the training data, thus
creating an item-cold-start situation for 1,964 item-user-pairs. While those item-
user-pairs might be of special interest for a LOD-enabled system, this subset
represents only a small fraction of the 67,989 user-item pairs in the evaluation
dataset.

1 http://challenges.2014.eswc-conferences.org/index.php/RecSys

2 Schuhmacher, Meilicke

2 System Description

For better understanding the dataset and the potential of linked data for im-
proving the recommendation process, we implemented both an unpersonalized
baseline using no external knowledge and a machine learning approach exploit-
ing item features derived from DBpedia. Our baseline does not make use of any
external data, but uses only the information found within the given training
dataset. It is based on the naive idea to recommend top-rated books. Our main
system takes a very different approach as it relies heavily on DBpedia for item
representation and uses supervised learning on the training data for making rat-
ing predictions. This system has participated as UniMannheim in Task 2 of the
challenge.

2.1 Unpersonalized Baseline

To understand the benefit of exploiting Linked Open Data, we implemented
a naive baseline that follows the simple idea to recommend books according to
their overall rating. Our baseline is thus an unpersonalized method that produces
the same recommendations for each user by computing a popularity score for
each book. In particular, we computed for each book b the score

pop(b) = #likes(b)/(#likes(b) + #dislikes(b) + 1)

where #likes(b) refers to the number of users that gave a positive rating for b
and #dislikes(b) refers to the number of users that gave a negative rating to
b. Note that we added +1 to the denominator to avoid that a book with no
negative ratings and a low number of positive ratings achieves a high score. We
refer to this method as the popularity baseline in the following.

For those 939 books that have not been observed in the training data, this
method yields pop(b) = 0, i.e. such a book is always less preferred compared to
any of the observed books. According to the results presented in [3] we would
expect that such a method is clearly outperformed by any personalized approach
or any other approach that uses external knowledge. However, we wanted to
implement a naive baseline to better understand in the results of the methods
discussed the next section.

2.2 Linked-Data-based Recommender

In contrast to the baseline, our Linked-Data-based recommender (LDR) makes
prominent use of external information, namely item features obtained from DB-
pedia. The key components are (i) the item representation model employing
features from DBpedia data, (ii) the naive Bayes classifier for rating prediction,
and (iii) the user-neighborhood-based collaborative filtering for reducing data
sparsity.

Item Features. In order to overcome the item sparsity and to be able to make
predictions for the unobserved items, we opt to represent each item by a set

ESWC’14 RecSys Challenge: Popular Books and Linked Data 3

of multi-valued multinomial features. Given the gold standard mappings from
book item ids to their corresponding DBpedia entities,2 we opt to focus on
the information available from DBpedia (Version 3.9). We manually chose the
following predicates to be queried and added as features:3

– Genre: dbo:literaryGenre
– Wikipedia subjects: dcterms:subject
– DBpedia and Yago types: rdf:type
– Author(s): dbo:author, dbo:writer
– Book Series: dbo:series
– Publisher: dbo:publisher

For reducing sparsity, we furthermore expanded all retrieved Wikipedia cat-
egories by their immediate super-category via the skos:broader predicate and
also add Wikipedia-links using dbo:wikiPageWikiLink (inspired by [1]).

Manual categories. The problem in using subjects, genres, and similar prop-
erties in the appropriate way is related to the fact that (i) there exist a waste
amount of different values, (ii) these values are often scattered over different
properties, and (iii) the values can be very specific (e.g., High fantasy novels

instead of fantasy). To overcome these problems, we have created a list of
30 categories like science fiction, fantasy, horror, philosophy, and so on.
To each of these categories we have assigned a simple regular expression (in
most cases just the name of the category). Then we have parsed the abstract
(dbo:abstract), the genre (dbo:literaryGenre, dbp:genre) and the subject
(dcterms:subject) of each book and checked whether the pattern defined by
the regular expression was identified. This resulted in a new aggregated feature
with more coverage and a restricted value set.

Feature expansion. To overcome the problem of sparsely populated features,
we computed similarity scores between values of the properties dcterms:subject,
dbo:literaryGenre and dbp:genre. For each value pair s1 and s2 we computed
the Dice similarity between all books labeled with s1 and all books labeled with
s2. This way we detected a high similarity between, for example, the values
Literary history and History of literature. Given a feature value v, we
added all those values v′ for which the similarity between v and v′ was higher
than 0.2. In a similar way, we expanded the author feature by adding to a book all
those authors with whom the original author ever wrote a book in co-authorship.

Rating Prediction Classifier. All item features were combined into one model
with multinomial variables. We opt to predict ratings with a supervised machine
learning approach in order to create the required, implicit item ranking. After
initial tests with different established machine learning methods4 (Naive Bayes,

2 The challenge data contain some inconsistencies, as e.g. different items have the same
DBpedia URI (384 duplicates), or the same title (319 duplicates). We opt explicitly
to not fix those errors and work with the dataset as given.

3 We abbreviate namespaces according to common rules (http://www.prefix.cc).
4 For experiments we used the Weka 3.7.10 Java API with LibSVM 1.0.5, alternat-

ingDecisionTrees 1.0.5, and bestFirstTree 1.0.3.

4 Schuhmacher, Meilicke

Support Vector Machine, Linear Regression, ADTrees) we decided to use a simple
Naive Bayes classifier, primarily due to its robustness and good performance in
terms of learning/training time. Even though we made several efforts in feature
creation and expansion, as described above, it turned out that learning one
classifier per user was not a successful approach. The most likely reason for that
is the relatively low training instances count of 11.71 items per user as well as
the high ratio of unrated to rated items per user of 1.2 (min 0, max 14, median
1). As a consequence, we created a mixture-model which we describe next.

Collaborative Filtering. As a per-user-based classifier was not successful, we
followed the idea of user-neighborhood-based collaborative filtering (see e.g. [2]).
For that purpose, we first compute user neighborhoods, i.e. clusters of varying
size that aggregate a given user and all other users from the training data that
have at least one common book in their ratings list. To account for different and
multiple ratings, we compute a simple score

UserSim(u1, u2) = |{b | r(u1, b) = r(u2, b)}| − |{b | r(u1, b) 6= r(u2, b)}|

where r(u, b) refers to the rating of user u for book b. Taking all user pairs with
UserSim(u1, u2) > 0 into account, we obtain a neighborhood per user. However,
to mitigate the effect of ratings sparsity, we also learned a global classifier for
smoothing, and combined the scores of both classifiers, unweighted and linear,
for those user neighborhoods being in the upper quartile Q3 (on this dataset
≥ 64) of the neighborhood’s user count. For users having a smaller number of
users in their neighborhood, we use only the global classifier to predict ratings.

3 Results and Analysis

Evaluation of our systems was performed directly via the official web-service of
the ESWC’14 Challenge. The submitted user-item-score list was treated as a
ranked results set, and Recall@5 (R@5), Precision@5 (P@5), and F-measure@5
(F1@5) was computed. Our results for different variations are shown in Table 1.

Results The first interesting observation is related to the good performance of
the popularity baseline. With an an F1 of 0.5583 the result for the Popularity
Baseline are nearly as good as the results of our Linked-Data-based Recom-
mender. Moreover, to our knowledge the best participating system achieved an
F1 score of 0.5715, which shows that we provide a rather strong baseline.

With the above described Linked-Data-based Recommender (LDR) configu-
ration (challenge submission name UniMannheim), we achieve an F1 of 0.5607.
Each of the features described shows by itself only a marginal contribution to
the overall performance, e.g. excluding the expansion of the DBpedia features
causes the F1 measure to decrease only to 0.5603. A similar observation holds for
the manual category schema that contributes only 0.002 points to the F1 score.

However, the different user aggregation methods (global, neighborhood, user)
show a significant influence on the overall performance. Our initial approach to
learn individually one classifier for each user yields only 0.5302 in F1, when using

ESWC’14 RecSys Challenge: Popular Books and Linked Data 5

Recall Precision F1-measure

Popularity Baseline 0.4905 0.6484 0.5585

LD-based Recommender (LDR) 0.4938 0.6486 0.5607

LDR w/o Feature Expansion 0.4933 0.6483 0.5603
LDR w/o Manual Categories 0.4936 0.6485 0.5605

Global Classifier 0.4927 0.6476 0.5596
Neighborhood+Global Classifier 0.4977 0.6502 0.5638
Neighborhood Classifier 0.4806 0.6326 0.5462
User Classifier 0.4644 0.6177 0.5302

Table 1. Evaluation results on test data, computed by ESWC’14 RecSys webservice.

the same feature set as for the LDR system. In contrast, using the same global
classifier for all users yields in 0.5596, thus showing better performance than
the Popularity Baseline. The middle ground between both approaches, learning
one classifier for each user neighborhood, has an F1 of 0.5462. Using an equally
weighted linear combination of the neighborhood classifiers and global classifier,
we were able achieve an F1 measure of 0.5638, which is the best result compared
to all other settings. However, this setting was not used for our official submis-
sion, even though it is the more intuitive approach compared to our submission
setting described above.

Conclusion. In summary, it was somehow surprising to us, that our unpersonal-
ized baseline system, performed comparably well on Task 2 of the Recommender
System Challenge. Furthermore, given that our LD-based solution differs sig-
nificantly from our baseline approach, the marginal difference in F1-measure of
0.0022 seems at first surprising. However, the key component of our LD-based
recommender is in the end the global classifier learned on all user ratings – which
is essentially the same idea that we follow with the unpersonalized popularity
score of the baseline. In conclusion, it seems that, at least for our approach, the
usage of LD was not significantly superior compared to a naive approach.

Acknowledgments

We would like to thank our colleagues Arnab Dutta and Johannes Knopp for
their valuable contribution to our systems, as well as Orphee De Clercq and
Robert Meusel for their support in understanding the data and technology used.

References

1. Di Noia, T., Mirizzi, R., Ostuni, V.C., Romito, D.: Exploiting the web of data in
model-based recommender systems. In: Proc. of RecSys’12. pp. 253–256 (2012)

2. Herlocker, J., Konstan, J., Riedl, J.: An empirical analysis of design choices in
neighborhood-based collaborative filtering algorithms. Information Retrieval 5(4),
287–310 (2002)

3. Jannach, D., Zanker, M., Felfernig, A., Friedrich, G.: Recommender systems: an
introduction. Cambridge University Press (2011)

