
SparqlFilterFlow: SPARQL Query Composition
for Everyone

Florian Haag, Steffen Lohmann, and Thomas Ertl

Institute for Visualization and Interactive Systems (VIS),
University of Stuttgart, Universitätsstr. 38, 70569 Stuttgart, Germany

{florian.haag,steffen.lohmann,thomas.ertl}@vis.uni-stuttgart.de

Abstract. SparqlFilterFlow provides a visual interface for the composi-
tion of SPARQL queries, in particular SELECT and ASK queries. It is based
on the intuitive and empirically well-founded filter/flow model that has
been extended to address the unique specifics of SPARQL and RDF.
In contrast to related work, no structured text input is required but
the queries can be created entirely with graphical elements. This even
allows users without expertise in Semantic Web technologies to create
complex SPARQL queries with only little training. SparqlFilterFlow is
implemented in C#, supports a large number of SPARQL constructs and
can be applied to any SPARQL endpoint.

Keywords: SPARQL, RDF, visual querying, filter/flow, semantic web,
linked data, triplestore, query language, visualization, faceted search.

1 Introduction

SPARQL is currently the de facto standard for querying RDF data. It is sup-
ported by most triplestores, and many RDF datasets provide SPARQL end-
points [4,8]. However, writing SPARQL queries is not an easy task and requires
knowledge about Semantic Web concepts and technologies. Since average users
cannot be expected to have the necessary skills, visual interfaces are needed that
hide the SPARQL syntax and provide graphical support for query building.

We present SparqlFilterFlow, a novel approach for visual SPARQL querying
based on the filter/flow model. 1 It is implemented in C# and uses the Windows
Presentation Foundation (WPF) for the graphical user interface. In contrast to
related work, no structured text input is required. Instead, the queries can be cre-
ated entirely with graphical elements. SparqlFilterFlow considers most features
of SPARQL and can hence also be used for the construction of complex query
expressions. In particular, it enables the creation of SELECT and ASK queries,
though it may also be used for other query forms (i.e. CONSTRUCT and DESCRIBE

queries) with only little variation.2

1 While this demo paper presents the interactive implementation, the concept of ap-
plying the filter/flow model to SPARQL querying is described more in-depth in [10].

2 A screencast of SparqlFilterFlow and a lightweight web demo with limited function-
ality are publicly available at http://sparql.visualdataweb.org.

http://sparql.visualdataweb.org

2 Florian Haag, Steffen Lohmann, Thomas Ertl

2 Related Work

Several attempts to assist in the creation of SPARQL queries have been presented
in the last couple of years. For instance, SPARQLViz [9] provides a form-based
wizard that guides the user through the query building process. Other form-
based approaches are the Graph Pattern Builder of the DBpedia project [6] or
Konduit VQB [5]. However, these tools represent the queries in a way that is
closely related to the triple syntax of RDF and SPARQL. They do not relieve
the users from the need to know how SPARQL queries are structured.

An alternative is the use of visual query languages that provide graphical
representations for the different SPARQL elements and combine them to node-
link diagrams. NITELIGHT [16], iSPARQL [2], and RDF-GL [13] are examples
of tools based on visual query languages. A slightly higher degree of abstraction
is provided by approaches that use UML-like diagrams to compose SPARQL
queries [7]. While these attempts help to lower the barrier for creating correct
queries, they still require knowledge of the structure and syntax of SPARQL.

SparqlFilterFlow is more related to the idea of using visual pipes to pro-
cess RDF data. This idea is implemented in the tools DERI pipes [15] and
MashQL [14], both of which are inspired by the mashup framework Yahoo!
Pipes [3]. However, these attempts focus on rearranging, sorting and transform-
ing data and not on the composition of SPARQL queries.

3 Filter/Flow Model

SparqlFilterFlow is based on the idea of filter/flow graphs originally introduced
by Young and Shneiderman in the context of relational databases and SQL
querying [17]. The filter/flow model provides an intuitive representation of Boolean
expressions that can be used for data filtering. The expressions are visualized as
directed acyclic graphs, where the nodes define the filter criteria and the edges
depict the flow of data. The thickness of the edges indicates the number of data
items contained in the flow. Conjunctions are modeled as sequential paths and
disjunctions as parallel paths.

Several improvements to the original filter/flow idea have been proposed over
the years. We developed an extended filter/flow model that incorporates the most
common ones [11]. In that model, flows are linked to explicit connection points
on the filter nodes called receptors and emitters. This allows the filter nodes to
receive data from several inbound flows that can be processed in different ways.
Likewise, there can be several outbound flows, each representing another filter
function. Along with these changes, filter nodes in the extended model are not
restricted to atomic operations but can consider several filtering parameters. Fi-
nally, the extended model defines special nodes that display the result of filtering
and can be placed at arbitrary positions in the graph, like any other filter node.
This way, not only the final result set but also intermediate results can be shown.

Overall, the filter/flow graphs of the extended model have a smaller size and
complexity, with positive effects on their readability, as we found in a compara-
tive user study [12].

SparqlFilterFlow: SPARQL Query Composition for Everyone 3

4 SparqlFilterFlow

SparqlFilterFlow implements our approach of applying the extended filter/flow
model to SPARQL querying [10]. Users can visually compose queries by adding
filter nodes and using drag-and-drop to connect them with flows.

PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX swrc: <http://swrc.ontoware.org/ontology#>
PREFIX dblp-conf:
 <http://dblp.l3s.de/d2r/resource/conferences/>
PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX dcterms: <http://purl.org/dc/terms/>

SELECT DISTINCT (COUNT(DISTINCT ?a) AS ?b)
WHERE {
 ?a a foaf:Agent.
 ?v a swrc:InProceedings.
 ?v swrc:series dblp-conf:esws.
 ?v dcterms:issued ?c.
 ?v dc:creator ?a.
 FILTER(str(?c) = str("2011")).
}

Fig. 1. Screenshot of SparqlFilterFlow: This graph counts authors of papers presented
at ESWC in the years 2011 to 2013, using RDF data of Faceted DBLP [1]. One of the
SPARQL queries generated by the graph is shown in the box on the right.

Example Figure 1 shows a screenshot of a filter/flow graph created with
SparqlFilterFlow on the RDF dataset of Faceted DBLP [1]. Examples like this
one can be created for different RDF datasets and will be shown in the ESWC
demo.

The filtering starts in the initial nodes of the graph, which are the ones
without inbound flows, in this case the two type nodes selecting all authors
(foaf:Agent) and proceedings papers (swrc:InProceedings). Both sets are
then gradually reduced by the subsequent filter nodes. Following the filter/flow
metaphor, the thickness of the flows indicates the relative size of the sets. This
helps users determine whether a given filter node has a significant effect on the
data—which is the case if the thickness of the outbound flows is visibly reduced
compared to the inbound flows—or even blocks the whole set.

In the example of Figure 1, only papers presented at ESWC (dblp-conf:esws)
in the years 2011 to 2013 (dcterms:issued) are considered. This set of papers
is then used to filter the set of authors by selecting only those people that co-
authored one of the papers (dc:creator). The data stream is additionally split
up into four sets, with the first three containing the ESWC authors from the
individual years, and the fourth set containing the ESWC authors from all three
years. Finally, the four sets of authors are bundled with a corresponding node.

4 Florian Haag, Steffen Lohmann, Thomas Ertl

Filter Nodes The example illustrates some of the filter nodes provided
by SparqlFilterFlow. Their settings can be directly manipulated by users. The
basic group of filters compares IRIs and literals, such as strings, numbers or
dates, with operators like equality, greater or less than. Certain attributes of a
literal can also be restricted in these filters, such as its language tag or its length
in characters. Another group of filters examines the RDF graph structure, for
instance the existence of a given property. There are also filters that help organize
the structure of the filter/flow graph, including filters that bundle different sets to
run in a single flow. Finally, there are specializations of general filter nodes that
predefine frequently applied restrictions to ease query composition. An example
is the type filter in Figure 1, which is a specialization of a comparison filter.

Result Nodes Once the desired restrictions have been defined by the com-
bination of filter nodes, users can add result nodes that apply the restrictions
in SELECT or ASK queries and display the result. In Figure 1, two result nodes
have been inserted—one showing the number of authors in each of the sets (by
using a SPARQL COUNT function along with the SELECT query), and one showing
whether there are any results at all (by applying a SPARQL ASK query).3

The results reveal that the total number of ESWC authors was lower in the
year 2012 than in the other two years. In addition, it gets apparent that the
total number of authors throughout the three considered years is barely lower
than the sum of the author counts per year, indicating that many of the authors
contributed only in one of the considered years.

SPARQL Queries Several SPARQL queries are generated and processed
during the composition of the graph. Most obviously, the result nodes issue one
or more SPARQL queries when they are inserted into the graph to retrieve the
values to be displayed. As an example, the SPARQL query generated to get the
number of ESWC authors for the year 2011, as given by the first value in the
left result node, is shown in Figure 1.

However, SPARQL queries are also generated at other points in the graph, in
particular for every emitter, in order to determine the thickness of the outbound
flows. The expression generator of SparqlFilterFlow always traverses the graph
in upstream direction, starting at the emitter that issued the SPARQL query. It
gradually constructs the query that comprises of the conjunctions, disjunctions
and filter functions defined by the partial graph reachable upstream, usually but
not exclusively by adding statements to the WHERE clause of the query. Whenever
any part of the graph structure or filter node settings changes, all nodes reachable
downstream from the changed graph part may be affected and are thus notified,
whereupon they reissue their SPARQL queries.

5 Conclusion and Future Work

SparqlFilterFlow enables the composition of SPARQL queries using exclusively
graphical elements and simple text strings, while avoiding any structured text

3 The result node for the ASK query is only added for illustration purposes in this case,
as it is somewhat redundant to the result node applying the COUNT function.

SparqlFilterFlow: SPARQL Query Composition for Everyone 5

input. It requires no knowledge of Semantic Web concepts beyond a basic un-
derstanding of the RDF idea. It can be applied to any SPARQL endpoint and
allows for creating complex SPARQL queries with only little training. Results
from a qualitative user study indicate that the approach is comparatively usable
and easy to learn [10].

Future work includes support for the creation of DESCRIBE and CONSTRUCT

queries besides SELECT and ASK queries. This will require the integration of
additional visualization and interaction concepts, such as an intuitive way to
specify the graph structure for the result of the CONSTRUCT query. Another goal
of future work is the development of features that suggest appropriate filter
nodes and values based on the schema information available in the RDF data.

References

1. Faceted DBLP. http://dblp.l3s.de.
2. OpenLink iSPARQL. http://oat.openlinksw.com/isparql/.
3. Pipes: Rewire the web. http://pipes.yahoo.com/pipes/.
4. SPARQL endpoints status. http://sparqles.okfn.org.
5. O. Ambrus, K. Möller, and S. Handschuh. Konduit VQB: a visual query builder

for SPARQL on the social semantic desktop. In Proc. VISSW ’10. CEUR-WS, vol.
565, 2010.

6. S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives. DBpedia:
A nucleus for a web of open data. In Proc. ISWC ’07/ASWC ’07, pages 722–735.
Springer, 2007.

7. G. Barzdins, S. Rikacovs, and M. Zviedris. Graphical query language as SPARQL
frontend. In Proc. ABDIS ’09, Workshops and DC, pages 93–107, 2009.

8. C. Bizer, T. Heath, and T. Berners-Lee. Linked data – the story so far. Int. J.
Semant. Web. Inf., 5(3):1–22, 2009.

9. J. Borsje and H. Embregts. Graphical query composition and natural language
processing in an RDF visualization interface. Bachelor thesis, EUR, 2006.

10. F. Haag, S. Lohmann, S. Bold, and T. Ertl. Visual SPARQL querying based on
extended filter/flow graphs. In Proc. AVI ’14, to appear.

11. F. Haag, S. Lohmann, and T. Ertl. Simplifying filter/flow graphs by subgraph
substitution. In Proc. VL/HCC ’12, pages 145–148. IEEE, 2012.

12. F. Haag, S. Lohmann, and T. Ertl. Evaluating the readability of extended fil-
ter/flow graphs. In GI ’13, pages 33–36. CIPS, 2013.

13. F. Hogenboom, V. Milea, F. Frasincar, and U. Kaymak. RDF-GL: A sparql-
based graphical query language for RDF. In Emergent Web Intelligence: Advanced
Information Retrieval, pages 87–116. Springer, 2010.

14. M. Jarrar and M. D. Dikaiakos. MashQL: A query-by-diagram topping SPARQL.
In Proc. ONISW ’08, pages 89–96. ACM, 2008.

15. C. Morbidoni, A. Polleres, D. L. Phuoc, and G. Tummarello. Semantic web pipes.
Technical Report 2007-11-07, DERI, 2007.

16. A. Russell, P. Smart, D. Braines, and N. Shadbolt. NITELIGHT: A graphical tool
for semantic query construction. In Proc. SWUI ’08. CEUR-WS, vol. 543, 2008.

17. D. Young and B. Shneiderman. A graphical filter/flow representation of boolean
queries: a prototype implementation and evaluation. J. Am. Soc. Inf. Sci.,
44(6):327–339, 1993.

http://dblp.l3s.de
http://oat.openlinksw.com/isparql/
http://pipes.yahoo.com/pipes/
http://sparqles.okfn.org

	SparqlFilterFlow: SPARQL Query Composition for Everyone
	Introduction
	Related Work
	Filter/Flow Model
	SparqlFilterFlow
	Conclusion and Future Work

