
SmarT INsiGhts (STING) - An Intelligence
Application for Querying Heterogeneous

Databases

Vikash Kumar, Ganesh Selvaraj, Andy Shin, Paulo Gottgtroy

Inland Revenue, New Zealand
firstname.lastname@ird.govt.nz

Abstract. This paper presents an application implemented at Inland
Revenue, New Zealand that enables users to access data seamlessly from
different types of databases. It was developed to provide our investigators
the ability to get comprehensive information about a business entity or
a group of entities. The solution presented so far has been implemented
using relational, semantic and document databases. It allows its users
to pose fairly complex queries on the mentioned databases and retrieve
results without having to know the specific query languages. Up to this
point, it supports the presentation of results in graph and tabular for-
mats.

Keywords: Semantic Database, Enterprise Semantics, Heterogeneous
Database Access, Semantic Intelligence

1 Introduction

One of the advantages of semantic technologies has been to bridge the silos of
data in a typical enterprise architecture. Many enterprises are, for various rea-
sons, still uncomfortable with the idea of completely wrapping their data via a
semantic access layer. Some of their concerns arise from having to re-engineer
or completely lose out on the host of functionalities already developed upon tra-
ditional relational databases. In this paper, we present a real example of how
we successfully implemented an application that queries relational, semantic and
document databases seamlessly depending on the nature of the query. This im-
plementation does not replace the existing relational database but extends it by
pairing it with the semantic and document databases. The resulting application
paved the way to make use of the best features of each type of databases enabling
efficient key, pattern and text based queries on the available data. The presented
application called SmarT INsiGhts (STING)1 is meant for investigators of In-
land Revenue, New Zealand (IR-NZ) for analyzing transactions (events) received
from an entity (company) or a group of entities. The main goal of STING is to
provide a simple way of accessing a variety of information about these entities.
It is achieved by enabling the investigators to answer simple or complex queries
through a single interface.

1 Demonstration video of the Application: http://youtu.be/enVGpQTwusE



2 Kumar et al.

Fig. 1. The STING Application

2 The STING Application

In this section, we describe the STING application and its use in our business
along with the details about its architecture and the underlying technologies.

2.1 Motivation

When receiving any transaction from customers, IR-NZ needs to assess the level
of risk associated with the transaction. Understanding how companies and group
of companies are organized for tax purposes is one of the critical pieces of in-
formation that IR-NZ needs to have. The application presented in this paper
(Figure 12) helps in visualizing such comprehensive information gathered from
multiple sources in interactive graph and tabular representations.

2.2 Architecture

A high level conceptual architecture of STING is presented in Figure 2. The
importance of this architecture lies in its model-driven hybrid backend that
consists of the following modules:

Common Domain Model This is a java based abstraction layer for all the
underlying databases. The main purpose of this layer is to help software devel-
opers in building applications based on the data abstraction without worrying
about the underlying knowledge representation and implementation database.

2 For privacy and security considerations, actual data has been masked in this figure
and in the demo video



STING - An Intelligence Application for Querying Heterogeneous Databases 3

Fig. 2. High Level Conceptual Architecture of the System

The Data Access Layer (DAL) and Decision Engine DAL helps in per-
forming CRUD (Create, Read, Update, Delete) operations on the databases.
Since there are several database implementations, this layer is powered by a de-
cision engine that decides on which database a query should be executed. The
decision engine is currently working based on several predefined static criteria.
The reason for using the static predefined criteria was because of our fixed and
well defined business domain. The key features and operations of each database
are mentioned in Table 1. The additional advantage of this architecture is its
ability to integrate diverse sources of data while maintaining a good performance
as seen in this application.

Relational Database Semantic Database Document Database

Query Type Key based queries
Example: Get companies
with Name = “XX”

Pattern based queries
Example: Get companies
which have risk patterns
similar to company
“XX”

Text based queries
Example: Get all docu-
ments which has a text
containing “XX”

Schema Schema constrained data Uses Ontology but not
constrained. Anyone can
say Anything on Any
topic (AAA)

Flexible Schema

Usage Existing applications
keep working on this.

Data gets migrated in a
batch. Reasoning & pat-
tern search is done here.

Data gets migrated in
a batch. Text search is
done here.

Table 1. Key Features of the Used Databases



4 Kumar et al.

STING’s Query Approach The application is developed based on a “Single
Page” concept where modules are used to allow not only customization of the
application but also the usage of docks that allow access to the application’s
functionalities without impacting on its usability aspect. The query functionality
follows this principle by allowing users to pose semi-customized queries in natural
language to the system through the selection of a dock icon.

Based on past experiences, we compiled a list of most common queries that
an investigator might be interested in and presented them in natural language
through the querying interface. In some cases, a user may make slight changes in
a query by clicking on its highlighted area, which provides them with alternative
variables as options. Some queries are also adapted based on the context of the
user, such as user’s location, level of authentication, etc. [1]. Behind the natural
language presentation, we have a SPARQL serialization of the query that is
posed to the semantic triple store. Parametrized SPARQL 1.1 queries are used
for binding the variable parameters chosen by the user.

Semantic queries can therefore be posed using a natural language template
or predefined “function buttons” on the user interface. The output from these
queries is represented as interactive graph structure (single or overlaid graphs) or
in tabular format where the users can expand or contract the entities spawning
out of a certain node. Examples of few of our pattern based queries in natural
language is shown in Table 2.

The whole system uses an adapted version of the Organization ontology3,
which in turn is mapped to the IR-NZ upper ontology. The IR-NZ upper ontol-
ogy is a lightweight adaptation of Proton4 and DOLCE+DnS Ultralite (DUL)
ontologies5. One of the prime considerations in design of ontology was to be able
to record provenance information and to query the ‘situation’ at a certain point
of time in past. The reasoning is limited to answering pattern based queries over
entity structure using SPARQL 1.1 features. In future, we plan to integrate more
detailed information from external open data sources.

Query ID Query Text

Query 1 Get all entities which are transitively related to a particular en-
tity.

Query 2 Get the group structure for a given group of companies.

Query 3 Filter companies of a certain group by Location.

Query 4 Find relationships between a chosen set of entities.
Table 2. Some of Our Sample Semantic Queries

3 http://www.w3.org/TR/2014/REC-vocab-org-20140116/
4 http://www.ontotext.com/proton-ontology
5 http://www.loa.istc.cnr.it/ontologies/DUL.owl



STING - An Intelligence Application for Querying Heterogeneous Databases 5

Tools and Technologies The User Interface is a single page web application
built using Angular.js6. D3.js7 is used to visualize information as graph in Scalar
Vector Graphics . The graph is formatted using a customized force layout method
based on Barnes-Hut Algorithm [2]. Node.Js8 is a JavaScript framework that is
used as web server enabling asynchronous calls from the I/O to the databases.
OWLIM Lite (version 5.4) [3] is used as our triplestore and Sesame (version 2.7.3)
API is used to access information from OWLIM Lite. D2RQ9 (version 0.8.1) is
used to generate RDF dump from an existing relational database. We are still
evaluating the document database. Our choice would be mongoDb for its pow-
erful features and wide community support. For this application, we used spring
data for mongoDb10 and pymongo11 libraries to load and query the mongoDb.

3 Conclusions

In this paper, we presented an application intended to help investigators in as-
sessing risk profiles of entities by answering their queries from different databases.
SQL, SPARQL and text-based queries are posed asynchronously on the respec-
tive databases depending on the nature of a query. The architecture allows for an
unhindered user experience bereft of any noticeable latency issues. We showed
how a specific application can use best of different worlds in answering queries
without compromising its existing infrastructure. During the demo, we will also
share our lessons learned in using different technologies along with the semantic
technology.

Acknowledgments This work has been supported by Information, Intel-
ligence and Communications unit of Inland Revenue. We would like to thank
the team members of Analytics and Insight for their valuable inputs towards
finalization of this Application.

References

1. V. Kumar, A. Fensel and P. Fröhlich. Context Based Adaptation of Semantic Rules
in Smart Buildings. The 15th ACM International Conference on Information In-
tegration and Web-based Applications & Services (iiWAS2013). Vienna, Austria.
December 2013.

2. J. Barnes and P. Hut. A hierarchical O(N log N) force-calculation algorithm. Nature
324 (4): 446-449. December 1986.

3. B. Bishop, A. Kiryakov, D. Ognyanoff, I. Peikov, Z. Tashev and R. Velkov. OWLIM:
A family of scalable semantic repositories. Semantic Web 2, 1, 33-42. January 2011.

6 http://www.angularjs.org
7 http://www.d3js.org
8 http://www.nodejs.org
9 http://www.d2rq.org

10 http://projects.spring.io/spring-data-mongodb/
11 https://pypi.python.org/pypi/pymongo/


