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Universitá Roma Tre, Rome, Italy
{dvr,maccioni}@dia.uniroma3.it

Abstract

Non expert users need support to access linked data available on the Web. To
this aim, keyword-based search is considered an essential feature of database
systems. The distributed nature of the Semantic Web demands query process-
ing techniques to evolve towards a scenario where data is scattered on dis-
tributed data stores. Existing approaches to keyword search cannot guarantee
scalability in a distributed environment, because, at runtime, they are unaware
of the location of the relevant data to the query and thus, they cannot optimize
join tasks. In this paper, we illustrate a novel distributed approach to keyword
search over RDF data that exploits the MapReduce paradigm by switching the
problem from graph-parallel to data-parallel processing. Moreover, our frame-
work is able to consider ranking during the building phase to return directly
the best (top-k) answers in the first (k) generated results, reducing greatly the
overall computational load and complexity. Finally, a comprehensive evalua-
tion demonstrates that our approach exhibits very good efficiency guaranteeing
high level of accuracy, especially with respect to state-of-the-art competitors.

Keywords: #eswc2014Virgilio

1 Introduction

The size of the Semantic Web is rapidly increasing due to numerous organiza-
tions that are opening up their databases on the Web following the linked data
principles. This causes that, often, RDF datasets do not fit on a single machine.
Moreover, data are linked only in a logical way, whereas, frequently, they are
physically distributed over different locations. Obviously, RDF data management
systems should be able to process distributed data [16]. There exists approaches
to query distributed RDF data with SPARQL-like queries [8,13,17]. Usually, they
exploit optimizations based on structural information (i.e. graph partitioning),
but unfortunately, they cannot adapt to answer structure-free queries, such as
keyword search-based queries. Keyword search is gathering the attention of Se-
mantic Web practitioners, who want to support users in accessing linked (open)
data. In fact, these users: (i) are usually unaware of the way in which data is or-
ganized, (ii) do not know how to interpret a Web ontology (if present) and (iii) do
not know the syntax of a specific query language (e.g., SPARQL). Clearly, there
is an imminent necessity to process efficiently keyword queries over distributed
RDF data stores. Unfortunately, approaches for keyword search over RDF data
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Fig. 1. An RDF graph G1 from DBLP.

are all centralized (e.g., [6,15,18]). This is due to the fact that the keywords in
the query do not help to identify how the RDF dataset has to be explored. Con-
sequently, they are compelled to compute many expensive join operations over
data distributed over different locations. Recently, MapReduce [5] has become
a “de-facto” standard for distributed and parallel massive data processing on a
cluster of commodity machines. MapReduce offers a high-level abstraction for
solving problems through rounds of two independent and subsequent functions,
i.e. map and reduce. MapReduce is an effective paradigm to compute algorithms
that require to read the data just once and for this reason, it is not efficient to
perform joins and graph algorithms [14].

Problem. Let us show with the example of G1 in Fig. 1 how the RDF keyword
queries are solved in order to point out why existing centralized approaches
(i.e. [15]) are not feasible in this context.G1 is a sample RDF version of the DBLP
dataset (a database about scientific publications). Vertices in ovals represent
entities, such as aut1 and aut2, or concepts, such as Conference and Publication.
Vertices in rectangles are literal values, such as Bernstein and Buneman. Edges
describe connections between vertices. For instance, entity aut1 is a Researcher
whose name is Bernstein.

Given a keyword search query over RDF, a generic approach would: À iden-
tify the vertices of the RDF graph holding the data matching the input key-
words, Á traverse the edges to discover the connections between them to build
n candidate answers (with n > k), and Â rank answers according to a relevance
criteria to return the top relevant k. While À can be easily solved considering
an indexing method over the content of the RDF graph, the task in Á requires
to compute lot of joins over the distributed data, which are disk and network
intensive. Moreover, the task in Á intrinsically computes more answers (an over-
set of the most relevant answers) than required and the task in Â cannot be
computed by independent parallel processes. It would be ideal to avoid Â by
generating exactly the best k answers in Á. Considering our running example
with the query Q1 = {Bernstein, SIGMOD, 2008}, a1 (i.e. articles of Bernstein



published in SIGMOD 2008 ) is intuitively more relevant than a2 (i.e. articles
of Buneman published in SIGMOD 2008 ) because it includes more keywords
and it should be retrieved as the first answer. Note that ranking functions con-
sider more elaborate criteria to evaluate the relevance of an answer. Ideally, if
one is interested in the top-2 answers, only a1 and a2 shall be computed, hence
avoiding a ranking procedure. In this way, at each step the answer generated is
the best possible in the sense that the answers generated next cannot have a
higher relevance. This property is called monotonicity and a process satisfying
such property is a monotonic process. A monotonic process allows to reduce
the time-to-result because the user can get an answer before the computation
of the following one is completed. Hence, a monotonic processing is particularly
desirable in the context of MapReduce to mitigate the latency of the execution.

Contribution. In this paper, we present a novel distributed keyword-based
search technique over RDF data that builds the best k results in the first k
generated answers. We exploit the MapReduce [5] paradigm in order to benefit
from the features (i.e. load balancing, fault tolerance, job scheduling, etc.) that
current implementations (e.g., Hadoop or variants thereof) give to developers.
Nevertheless, MapReduce is a data-parallel paradigm that is not very efficient
for the processing of RDF data, which usually requires join-intensive tasks. By
exploiting a path-store for RDF, we reverse the distributed keyword search over
RDF from a graph-parallel problem to a data-parallel problem. This store is an
implementation of the work in [1] on Hadoop/HBase and it is not a contribu-
tion for this paper. Intuitively, in this store, the connections among elements (i.e.
adjacencies and intersections) of the RDF graph are explicitly stored in paths, al-
lowing us to avoid, in this way, the computation of joins. In general, while existing
approaches explore the dataset to find sub-graphs holding relevant information
to the query, we only combine the RDF paths according to their precomputed
intersections. In addition, since the relevance of answers is highly dependent on
both the construction of candidates and on their ranking, our query answering
combines search and ranking. In our approach the RDF paths that are relevant
to the query are retrieved from the store and then grouped (i.e. clustered) with
respect to a criteria that captures the type of information in the path. Then,
we compute, at each step, the most relevant answer by picking and combining
the most relevant paths from each group. The relevance is given by a scoring
function. Note that, however, our approach is scoring functions agnostic. Note
that this approach is inspired by the theoretical results in [4], but it proposes
different algorithms. To validate our approach, we have developed a distributed
system for keyword-based search over RDF data that implements the techniques
described in this paper. Experiments over widely used benchmarks have shown
very good results with respect to other approaches, in terms of both effectiveness
and efficiency.

Outline. The rest of the paper is organized as follows. Section 2 introduces some
preliminary issues. Section 3 overviews the proposed approach to keyword search,
while Section 4 illustrates the distributed algorithms in detail. In Section 5, we



discuss related research and in Section 6, we present the experimental results.
Finally, in Section 7, we draw our conclusions and sketch future research.

2 Basic Concepts

This section introduces some preliminary notions and the problem we address.

Data Structures. RDF datasets are naturally represented as labeled directed
graphs.

Definition 1 (RDF Data Graph). An RDF data graph is a labeled directed
graph G = {V,E,ΣV , ΣE , LG} where V is a set of vertices and E ⊆ V × V is a
set of ordered pairs of vertices, called edges. ΣV and ΣE are the sets of vertices
and edge labels, respectively. The labeling function LG associates an element of
V to an element of ΣV and an element of E to an element of ΣE.

We call start vertex, the vertices of G with no in-going edges, and end ver-
tices, the vertices of G with no out-going edges. Basically, a path in a graph G
is a sequence of labels from a start vertex to an end vertex of G. In the case of
cycles, a path ends, intuitively, just before the repetition of a vertex label. More-
over, if there is no start vertex in G, a path starts from vertices whose difference
between the number of outgoing edges and the number of the incoming edges is
maximal in G. We call these vertices hubs.

Definition 2 (Path). Given a graph G = {V,E,ΣV , ΣE , LG}, a path is a se-
quence p = lv1 − le1 − lv2 − le2 − . . . − lev−1

− lvj where: (i) lvi = LG(vi),
lei = LG(ei), and vi ∈ V , ei = (vi, vi+1) ∈ E, (ii) v1 is either a start vertex or,
if G has no start vertices, a hub, and (iii) vj is either an end vertex or a vertex
such that there is no edge (vj , vj+1) such that LG(vj+1) (the label of vj) already
occurs in p.

In the following, we will call v1 and vj the source and the sink of a p, re-
spectively. The length of a path is the number of vertices occurring in the path,
while the position of a vertex corresponds to its position among the vertices in
the path. For instance, the graph in Fig. 1 has two sources: pub1 and pub2. An
example of path is p2 = pub1-author-aut1-name-Bernstein, whose length is 3 and
the vertex aut1 has position 2. In our approach we exploit a path-store inspired
by [1] that indexes all paths starting from a source and ending with a sink. Obvi-
ously, at running time we are interested in the paths relevant to the query, that
is, the paths whose sinks match at least one keyword of the query. As in [15],
we assume that users enter keywords corresponding to attribute values, that are
necessarily within the sink’s labels. This is not a limitation because vertices la-
beled by URIs are usually linked to literals, which represent verbose descriptions
of such URIs. In our implementation, the operation of matching is executed with
standard libraries based on full text search techniques (such as stemming). Since
this aspect is outside the scope of the paper, we will simply assume, hereinafter,
that the operation of matching provides a support for imprecise matching be-
tween labels and we will use the term matching between values in this sense,



without discussing this aspect further. In a path, the sequence of edge labels de-
scribes the corresponding structure. To some extent, such a structure describes a
schema for the values on vertices that share the same connection type. While we
cannot advocate the presence of a schema, we can say that such a sequence is a
template for the path. Therefore, given a path p, its template tp results from the
path where each vertex label is replaced with the wild-card #. In the example
of Fig. 1, the template tp2

associated to p2 = pub1-author-aut1-name-Bernstein is
#-author-#-name-#. We say that p2 satisfies tp2

, denoted with p2 ≈ tp2
. Multiple

paths that share the same template can be considered as homogeneous.
When two paths pi and pj share a common vertex, we say that there is an

intersection between pi and pj and we indicate it with pi ↔ pj . Finally, an
answer a to Q over G is a set of paths forming a connected components, i.e. a
directed labeled sub-graph of G where the paths present pairwise intersections
as defined below.

Definition 3 (Answer). An answer a is a set of paths p1, p2, . . . , pn where
∀pa, pb ∈ a there exists a sequence [pa, pw1

, . . . , pwm
, pb], with m < n, such that

pwi ∈ a, pa ↔ pw1 , pb ↔ pwm , and ∀i ∈ [1,m-1] : pwi ↔ pwi+1 .

Note that, since the paths form a connected component, our notion of answer
basically corresponds to the notion of RDF sub-graph answer used by other
approaches.

Ranking and monotonicity. To assess the relevance of an answer a for a
query Q, a scoring function score(a,Q) is adopted. It returns a number that is
greater when the answer is more relevant. Then, the ranking is given by ordering
the answers according to their relevance. A query answering process is monotonic
if the i-th generated answer is always more relevant than the (i+1)-th. It follows
that, if a query answering is monotonic, a ranking task is needless. Since a single
path can be an answer, it is reasonable to consider the same scoring function
to evaluate both paths and answers. In the following sections, we will use the
notation score(p,Q) and score(a,Q) to evaluate the relevance of a path p and
of an answer a with respect to the query Q, respectively. We remark that, unlike
all current approaches, we are independent from the scoring function: we do not
impose a monotonic, aggregative nor an “ad-hoc for the case” scoring function.

Problem definition. Given a labeled directed graph G and a keyword search
based query Q = {q1, q2, . . . , qn}, where each qi is a keyword, we aim at finding
the top-k ranked answers a1, a2, . . . , ak to Q.

3 Monotonic Keyword Search

This section overviews our distributed approach to keyword search over RDF and
discusses the conditions under which the answer generation process exhibits a
monotonic behaviour. The flow of execution is shown in Fig. 2, but the algorithms
of each block will be detailed in the next Section 4.

Let G be an RDF data graph and Q a keyword query over it. Our approach
provides two main phases: the indexing (done off-line), in which all the paths of
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Fig. 2. The flow of execution.

G are indexed in the store (the orange part of Fig. 2), and the query processing
(done on-the-fly), where the query evaluation takes place. The first task will be
described in more detail in Section 6. Intuitively, let us consider a distributed
environment composed by two machines. For example, the paths of G can be
stored within the two independent path stores in Fig. 3. Note that the replication
of data is transparent to the developer in MapReduce, so we assume the content
of the two path stores to be disjoint.

path store 1 :
p1 : pub1-year-2008
p2 : pub1-author-aut1-name-Bernstein
p4 : pub2-year-2008

. . .


path store 2 : p3 : pub1-acceptedBy-conf1-name-SIGMOD
p5 : pub2-editedBy-conf1-name-SIGMOD

. . .


Fig. 3. Distributed Path-Store.

In the second phase, all paths P relevant for Q (i.e. all paths whose sinks
match at least one keyword of Q) are retrieved by exploiting the store. Then, the
best answers are generated from P (blue part of Fig. 2). An important feature of
this phase is the use of the scoring function while computing the answers. This
phase is performed by the following two main tasks:
Clustering. In this task (the green part of Fig. 2) we group the paths of P into

clusters according to their template. Every distributed node manages a set
of clusters, that in our running example with Q1 over G1 are CL1 and CL2 as
showed in Fig. 4. In this case clusters cl1, cl2, cl3 and cl4 correspond to the
different templates extracted from P . Before the insertion of a path p in the
cluster, we evaluate its score. The paths in a clusters are ordered according to
their score with the greater coming first, i.e. score(p1, Q1) ≥ score(p4, Q1). It
is straightforward to demonstrate that the time complexity of the clustering
is O(|P |): it executes |P | insertions into the clusters.



CL1 :(
cl1[#-year-#] : p1, p4
cl2[#-author-#-name-#] : p2

) CL2 :(
cl3[#-acceptedBy-#-name-#] : p3
cl4[#-editedBy-#-name-#] : p5

)
Fig. 4. Clustering of paths.

Building. The last task aims at generating the most relevant answers by com-
bining the paths in the clusters (yellow part of Fig. 2). This is done by
picking and combining the paths with greatest score from each cluster, i.e.
the most promising paths. Note that we diversify the answer content by not
including homogeneous data, that is paths from the same cluster.

The combination of paths is led by a strategy that decides whether a path has
to be inserted in a final answer or not. Two different strategies are defined:

1. linear strategy : it guarantees a linear time complexity with respect to
the size of the input in a single round of MapReduce. Basically, the final
answers are the connected components of the most relevant paths of the
clusters.

2. monotonic strategy : it generates the answers in order according to their
relevance in a quadratic time complexity with respect to the size of the
input. It completes in 2 × k rounds of MapReduce, at most. As the
linear strategy, it computes the connected components from the most
relevant paths in the clusters, but differently, the path interconnection is
not the only criterion to form an answer. At this point every connected
components is analysed to check if it fulfils the monotonicity, that is to
check if the answer we are generating is optimum. This check is supported
by the so called τ -test, which is explained in [4].

Algorithm 1: LinearBuilding (Map)

Input : The map CL.
Output: A list of pairs < key, value >.

iteration← 1;1

while CL is not empty do2

foreach cl ∈ CL do3

first cl← cl.DequeueTop() ;4

foreach p ∈ first cl do5

output(<iteration, p >) ;6

iteration← iteration + 1;7

4 MapReduce Building Strategies

Given the query Q and the set P of paths matching the query Q, retrieved from
the path-store, we compose those paths to generate the final top-k answers. In the
following we discuss separately the two strategies implemented in MapReduce.



4.1 The Linear Strategy

Given the set of clusters CL, the building of answers is performed by generating
the connected components CC from the most promising paths in CL. The linear
strategy requires only one round of MapReduce. Every machine executes a map
job (Algorithm 1), while the total number of reduce jobs is the maximum number
of different scores present in the clusters. Algorithm 1 iterates over the local
clusters (lines [3-6]) to extract the top paths from cl (line [4]), i.e. all paths
having the same (top) score. The iterations continue until the clusters are empty
(line [2]). At each iteration, the top paths are inserted in first cl and each of
them is returned as value in a pair with the number of the iteration as key
(line [6]).

Algorithm 2: LinearBuilding (Reduce)

Input : A pair < key, value >.
Output: A list of answers.

CC← FindCC(value);1

ans← ∅;2

foreach cc ∈ CC do3

ans.Enqueue(cc);4

return ans ;5

A reduce function (Algorithm 2) receives a list value of paths extracted
during the same iteration and an integer key (that is not used). Out of value,
we compute the connected components CC (line [1]), each of which represents an
answer. Referring again to our example, the mappers produce the pairs< 1, p1 >,
< 1, p2 >, < 1, p3 >, < 1, p5 > and < 2, p4 >. After the shuffle phase, we
have the pairs < 1, (p1, p2, p3, p5) > and < 2, (p4) > which are assigned to
different reducers. The first reducer produces cc1 = {p1, p2, p3, p5}, while the
other produces cc2 = {p4}. All the answers are returned in output (line [5]).
Note that, if we retrieve k answers, we stop the launch of more reducers.

Computational Complexity. Algorithm 1 and Algorithm 2 produce the an-
swers in linear time with respect to the number I of paths matching the input
query Q. The Algorithm 1 is in O(I) because it makes I extractions and I in-
sertions of pairs. Algorithm 2 is in O(I) in the worst case, which happens when
only one reducer is called (the case is similar to a sequential version of the al-
gorithm). Therefore, the computation is given by the call of FindCC that has a
complexity of O(I) (it iterates over I paths once, see pseudo-code in [4]) followed
by I insertions at most. We can state that the overall linear strategy is in O(I).

Ranking. This strategy produces good answers efficiently; in our example, we
have a1 = {p1, p2, p3, p5} and a2 = {p4}. Observing the answers with respect to
Q1, a1 contains the unnecessary p5, while a2 is partially incomplete (i.e. it should
include p5). Such strategy tends to produce exhaustive answers but not optimally
specific, that is to include all relevant information matching the query but not
optimally limiting the irrelevant ones. The answer generated at each step may not



be the optimum answer: it may happen to generate a sequence of two answers,
ai and ai+1, where score(ai+1, Q) > score(ai, Q). Moreover, since we output the
answers as soon as they are built, we do not control if ai+1 is completed before
ai. The ranking of this strategy cannot guarantee monotonicity.

4.2 The Monotonic Strategy

In this section, we provide a second strategy that implements the τ -test (see The-
orem in [4]) while building the answers. In this case the iterations are dependent
on each other because discarded paths have to be used in the next iterations.

Algorithm 3: MonotonicBuilding (Map Round 1)

Input : The map CL.
Output: A list of pairs < key, value >.

first← ∅;1

foreach cl ∈ CL do2

first← first ∪ cl.DequeueTop() ;3

CC← FindCC(first);4

foreach cc ∈ CC do5

output(<1, cc>) ;6

To produce an answer we launch two rounds of MapReduce. The first round
(Algorithm 3 and Algorithm 4) produces the connected components among the
most relevant distributed paths; the second round (Algorithm 5 and Algorithm 6)
analyses the connected components in parallel, producing the final answers. Af-
ter the clustering of paths in CL, the mappers (Algorithm 3) compute the local
connected components (line [4]) of the most relevant paths (lines [2-3]). Then,
each connected component cc is sent to the same reducer (lines [5-6]). The re-
ducer of the first round is in Algorithm 4. It takes all the locally computed
connected components and produce the global connected components. It calls
the function FindCC (line [1]) taking advantage from partially computed con-
nected components of the input.

Algorithm 4: MonotonicBuilding (Reduce Round 1)

Input : A pair < key, value >.
Output: a list of global connected components.

CC← FindCC(value);1

return CC ;2

The map function of the second round (Algorithm 5) dispatches every global
connected component cc to a different reducer (lines [2-4]).

Every reducer of the second round (Algorithm 6) receives a con-
nected component as value and launches a local analysis procedure, i.e.
MonotonicityAnalysis (line [1]), to apply the τ -test. For the purpose, the re-
ducer uses as input the more relevant path ps in CL. This path is kept as a global



Algorithm 5: MonotonicBuilding (Map Round 2)

Input : The list of connected components CC.
Output: A list of pairs < key, value >.

i← 0;1

foreach cc ∈ CC do2

i← i+ 1;3

output(<i, cc>) ;4

variable within the distributed environment1 . At the end of the analysis, an op-
timal answer a is returned (line [3]) and the discarded paths of the connected
components value are inserted back into the clusters (line [2]). Note that, since
there are more reducers returning an optimum answer, we only output one of
them to the user and the others are reinserted into the clusters.

Algorithm 6: MonotonicBuilding (Reduce Round 2)

Input : A pair < key, value >, a path ps.
Output: an answer.

a← MonotonicityAnalysis(value, ∅, ps);1

InsertPathsInClusters(value, CL);2

return a;3

Monotonicity Analysis. Algorithm 7 checks if the answer we are generating
is (still) optimum, thus, it preserves the monotonicity. It is a recursive function
that generates the set OptAns of all answers (candidate to be optimum) by
combining the paths in a connected component cc. At the end, it returns an
answer optA given by the maximal and optimum subset of paths in cc. It takes
as input the connected component cc, the current optimum answer optA and the
top path ps contained in CL. If cc is empty, we return optA as it is (lines [1-2]).
Otherwise, we analyze all paths px ∈ cc that present an intersection with a path
pi of optA (px ↔ pi). If there is no intersection, then optA is the final optimum
answer (lines [6-7]). Otherwise, for each px, we calculate τ (line [10]), through
the function getTau, and then execute the τ -test on each new answer optA’,
that is optA ∪ {px}. If optA’ satisfies the τ -test (line [11]), then it represents
the new optimum answer: we insert it into OptAns and we invoke the recursion
on optA’ (line [12]). Otherwise, we keep optA as optimum answer and skip px
(line [14]). At the finish, we want an optimal answer that is not a subset of
any other. This is done by selecting the maximal optA from OptAns by using
TakeMaximal (line [15]).

Let us consider our running example. In the first round we produce the
connected components. The mappers produce the local connected components
through the pairs < 1, {p1, p2} > and 1, {p3, p5} >, the reducer produces one

1 The global variable is implemented by means of the Hadoop’s Distributed Cache
functionality



global connected component cc1 = {p1, p2, p3, p5}, whose paths have, by using
the scoring function implemented in [4], score 2.05, 1.63, 1.6 and 1.49, respec-
tively. In the reduce phase of the second round, we analyse all possible com-
binations of the paths in cc1 to find the optimum answer(s). Therefore, at the
beginning we have optA = {p1}, since p1 has the highest score, and ps is p4 (i.e.
it is the only path in the clusters). The value of τ is 1.86. Then, the algorithm re-
trieves the following admissible optima answers: a′1 = {p1, p2, p3}, a′2 = {p1, p3},
and a′3 = {p1, p2, p5}. These answers are admissible because they satisfy the
τ -test and their paths present pairwise intersections. During computation, the
analysis skips answers a′4 = {p1, p2, p3, p5} and a′5 = {p1, p3, p5} because they do
not satisfy the τ -test: they have scores 1.55 and 1.26, respectively. Finally, the
function TakeMaximal selects a′1 as the final first optimum answer a1 since it
has more paths and the highest score. Following a similar process, at the second
round, the algorithm returns a2 = {p4, p5} with a lesser score than a1.

Algorithm 7: Monotonicity Analysis

Input : A set of paths cc, an answer optA, a path ps.
Output: The new (in case) optimum answer optA.

if cc is empty then1

return optA;2

else3

OptAns← ∅;4

foreach px ∈ cc do5

if (@pi ∈ optA : px ↔ pi) and optA is not empty then6

OptAns← OptAns ∪ optA ;7

else8

optA’← optA ∪ {px};9

τ ← getTau(cc - {px }, ps);10

if score(optA’, Q) ≥ τ then11

OptAns← OptAns ∪ MonotonicityAnalysis(cc - {px }, optA’,12

ps);

else13

OptAns← OptAns ∪ optA ;14

optA← TakeMaximal(OptAns) ;15

return optA;16

Computational Complexity. Following the discussion illustrated in [4], al-
though this analysis achieves our goal, the computational complexity of the gen-
eration process is in O(I2), where I is the number of paths matching the input
query Q. The execution of the first round functions is in O(I) because: in the
mapper we have that lines [2-3] are in O(|CL|) ∈ O(I), line [4] (it iterates over I
paths once, see pseudo-code in [4]) and lines [5-6] are also in O(I); line [1] of the
reducer is in O(I). Then, the connected components cc ∈ CC are parallelly anal-
ysed in the second round. Algorithm 5 iterates over CC and therefore it is in O(I).
Algorithm 6 computes at most I insertions (through InsertPathsInClusters)



and launches the function MonotonicityAnalysis that is in O(I2). This is a re-
cursive function where the main executions are in lines [9-12] and line [15]. Both
the executions are in O(I), since we have I elements to analyse at the most. The
recursion is called at most I times and therefore MonotonicityAnalysis is in
O(I2), which is also the computational time complexity of the overall monotonic
strategy. In the worst case, the computation is computed in 2×k rounds, two for
each generated answer. A comprehensive discussion about the quality and accu-
racy of the answers according to measures of exhaustivity (EX ) and specificity
(SP) can be found in [4].

5 Related Work

We consider two different categories of related work that we discuss separately
in the following.

RDF Keyword Search. Ad-hoc approaches for RDF have been pro-
posed [6,15,18]. The work in [15] proposes a semi-automatic system to interpret
the query into a set of candidate conjunctive queries. Users can refine the search
by selecting the computed candidate queries to submit that represent their in-
formation need. Candidate queries are computed exploring the top-k sub-graphs
matching the keywords. The approach in [18] relies on a RDFS domain knowl-
edge to convert keywords in query-guides, which help users to incrementally
build the desired semantic query. While unnecessary queries are not built (thus
not executed), there is a strict dependency on user feedback. The work in [6]
employs a ranking model based on IR and statistical methods.

Distributed RDF Processing. The distributed nature of the Semantic Web
infrastructure arises the necessity to compute RDF data in a parallel and dis-
tributed fashion. Most of the works in this context [10,7,9,8,11,13,17] employ
a distributed environment of RDF data-stores and compute SPARQL queries
over them. In particular, the works in [10,8,9,11] make use of Hadoop or
Hadoop/HBase to compute joins and manage the distribution of the query.
DARQ [13] implements a framework to solve federated SPARQL queries. The
work in [16] proposes a scalable P2P system for computing reasoning on RDF(S),
while the work in [12] solves RDF path queries in MapReduce. All of these ap-
proaches exploit the structural information of the RDF data graph and are not
applicable for solving keyword search queries, which miss such specifications. For
this reason, all existing RDF keyword search approaches are centralized. Trini-
tyRDF [17] considerably differs from the other approaches. It is an in-memory
store where data is natively modelled as a graph. TrinityRDF is able to expedite
the query processing by optimizing graph random accesses. Unfortunately, it re-
quires a huge amount of memory and it is more suitable for a cloud infrastructure
rather than a cluster of commodity machines.



6 Experimental Evaluation

We implemented our approach in YaaniiMR, a Java system for keyword search
over RDF graphs, that is a MapReduce implementation of Yaanii discussed
in [4]. In our experiments, we used the benchmark provided by Coffman et
al. [2] that employs two well-know datasets, IMDb and Wikipedia, and an ideal
counterpart due to its smaller size, Mondial. In our context, we used the RDF
versions of three datasets: DBPedia (i.e. 266M triples) including Linked IMDb2

for the benchmark related to IMDb, Billion (i.e. 1000M triples) that is the
Billion Triple Challenge Dataset 2008 3 including Wikipedia3 4 for Wikipedia,
while for Mondial we converted the SQL dump into RDF ourselves (i.e. 15000
triples). For each dataset, we run the set of 50 queries provided by [2] (see the
paper for details and statistics). Since the results, and therefore the effectiveness,
of YaaniiMR is the same of Yaanii [4], in this section we focus exclusively on
the performance.

Benchmark Environment. We deployed YaaniiMR on EC2 clusters. In par-
ticular, to fully understand the scale-up properties of YaaniiMR, we consider
three EC2 clusters quadruple (i.e. cc1.4xlarge configuration as detailed by Ama-
zon Web Service): 10, 50 and 100 nodes. YaaniiMR is provided with the Hadoop
file system (HDFS) version 1.1.1 and the HBase data store version 0.94.3, and
compiled and run using Java 7. The performance of our systems has been mea-
sured with respect to data loading, memory footprint, and query execution.

Data Loading. We employ a path-based store on RDF for a distributed envi-
ronment that is the evolution of the index in [1]. This is stored in HBase and
supported by the distributed file system HDFS. The RDF dataset is indexed
off-line. In particular, we index all the shortest paths starting from a source and
ending with a sink. This task is efficiently performed by an optimized imple-
mentation of the Breadth-first search (BFS) strategy through MapReduce [3].
At running time we use the index to retrieve the paths whose sink node matches
a keyword.
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Fig. 5. (a) Data loading times in seconds and (b) Data Space consumption
expressed in MB in 10-nodes EC2 cluster.2 Available at http://linkedmdb.org/
3 Available at http://challenge.semanticweb.org/
4 Available at http://stats.lod2.eu/rdfdocs/228
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We used the three EC2 clusters to evaluate the upload time (the time to
build all paths and to import them into our index) as showed in Fig. 5.(a).
In particular the figure illustrates times only for DBPedia and Billion, since
Mondial spends only few seconds for starting up all jobs. Both DBPedia and
Billion achieve roughly the same upload times in any configuration, providing
a linear trend: overall, these results show the efficiency of data loading in our
system when scaling-out. Another significant advantage of our system relies in
memory and space consumption. Let us consider the 10-nodes EC2 cluster. The
overall memory overhead needed to maintain our index remains almost constant,
and amounts to circa 1 MB of RAM for node. The total distributed space con-
sumption for node scales perfectly with the size of the dataset. As illustrated in
Fig. 5.(b), we have 1.4 MB, 349.3 MB and 1781.1 MB for node to store Mon-
dial, DBPedia and Billion in our cluster. Proportionally, we have the same
behaviour for 50 and 100 nodes.

MapReduce Job Execution. The second evaluation analyses the performance
of YaaniiMR when running MapReduce jobs. To this aim we measure the end-
to-end job run-times, which is the time a given job takes to run completely.
In this case, we perform three runs for each of the 50-queries (over the three
datasets) to retrieve the top-10 answers: at the end we evaluate the geometric
mean of all the runs of the 50 queries for dataset in the three EC2 clusters
configurations (i.e. 10, 50 and 100 nodes), as shown in Fig. 6. In the figure, the
job runtime is made by the ideal time (Tideal) and the overhead (Toverhead) that
are the effective time to run the query and the time to startup all necessary
jobs, respectively. For each dataset we evaluate the average response time (i.e.
computed by the geometric mean of times) of all queries executed by using both
the linear, i.e. L, and the monotonic, i.e. M, strategy. Finally we replicated this
experiment in 10-nodes, 50-nodes and 100-nodes cluster.
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Fig. 6. End-to-end job runtimes

As we can see, Toverhead dominates the total job runtime. To schedule a
single job, Hadoop spends 1 or 2 seconds even though the actual task (query
execution) just runs in a few ms. Therefore, it is comparable to Yaanii [4]. Our
implementation in MapReduce scales perfectly with respect to both the number
of machines (i.e. 10, 50 and 100) and the dataset size (i.e. Mondial, DBPedia
and Billion).



7 Conclusions and Future Work

In this paper, we presented a novel approach to distributed keyword search query
over large RDF datasets. It relies on a MapReduce environment and comprise
two strategies for top-k query answering. The linear strategy enables the search
to scale seamlessly with the size of the input, while the monotonic strategy guar-
antees the monotonicity of the output. Experimental results confirmed our algo-
rithms and the advantage over other approaches. This work now opens several
directions of further research. From a practical point of view, we are widening
a more synthetic catalogue to store information and optimization techniques to
speed-up the index creation and update.
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