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Abstract. Ontology authoring is a non-trivial task for authors who are not pro-
ficient in logic. It is difficult to either specify the requirements for an ontology,
or test their satisfaction. In this paper, we propose a novel approach to address
this problem by leveraging the ideas of competency questions and test-before
software development. We first analyse real-world competency questions col-
lected from two different domains. Analysis shows that many of them can be
categorised into patterns that differ along a set of features. Then we employ the
linguistic notion of presupposition to describe the ontology requirements implied
by competency questions, and show that these requirements can be tested auto-
matically.
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1 Introduction

In recent years, ontologies based on Description Logics [1] have been widely accepted
as an important means for representing and formalising knowledge in different applica-
tions [15]. For example, the SNOMED CT (Systematized Nomenclature of Medicine-
Clinical Terms) [19] ontology has been mandated for use in over thirty countries.

Ontology authoring remains a challenging task. Studies on ontology authoring such
as experiences from the OWL Pizzas tutorial [18] and the NeOn project [7] suggest
that ontology formalisms are often not straight-forwardly comprehensible and logical
implications can be difficult to resolve. This is because ontology authors are usually
domain experts but not necessarily proficient in logic. While it may be difficult for them
to express their requirements for the axiomatisation of an ontology, it is also difficult
to know whether the requirements are fulfilled as a result of their ontology authoring
actions. Hence, ontology authoring is usually time consuming, error-prone and requires
extensive training and experience [18].

As a first step towards Competency Question-driven Ontology Authoring (CQOA),
we address the problems outlined by leveraging the ideas of competency questions and
testing driven software development (where a suite of tests represents a specification for
a programme and the tests are coded against). A competency question (CQ) [23] is a
natural language sentence that expresses a pattern for a type of questions people expect
an ontology to answer. The answerability of CQs hence becomes a functional require-
ment of the ontology. For example, in a software engineering ontology, in order to



support the answering of the question “Which process implements a given algorithm?”,
the ontology should contain concepts Process and Algorithm, and their instances should
be able to have a relation called Implements. Also the ontology should (in ways we will
investigate below) make it meaningful to ask the question “Which process implements
algorithm X?” for any algorithm “X” in the ontology. To investigate such character-
istics of ontologies, we are more interested in checking if a CQ can be meaningfully
answered, instead of directly answering a CQ. Hence, our research questions are:

1. How are real-world CQs formulated?
2. How can we automatically test whether a CQ can be meaningfully answered?

In this paper, we answer question 1 through the study of real-world CQs in different
domains and composed by real ontology authors/users with different levels of expertise.
We categorise CQs into several frequent patterns that differ along a set of features and
show that CQs collected by us and investigated in previous work can be covered by
such a framework. To answer question 2, we employ the notion of presupposition from
linguistics to capture the ontology requirements implied by CQs. We show that these
presuppositions can be tested automatically at authoring time.

2 Competency Question-driven Ontology Authoring

2.1 Ontological Artifacts in Description Logics

In general, when specified in a Description Logic (DL), an ontology uses classes,
properties and their instances to describe the domain of discourse. Atomic classes
such as CheeseTopping, Pizza and atomic properties such as hasTopping can be
connected with DL constructors to compose complex classes. For example, Pizza u
∃hasTopping.CheeseTopping means pizzas that have at least one cheese topping.
The relationships between classes, properties and instances are described with ontol-
ogy axioms. Considering the following typical axioms:

CheeseyP izza ≡ Pizza u ∃hasTopping.CheeseTopping (1)
AmericanPizza v Pizza (2)
AmericanPizza v ∃hasTopping.MozzarellaTopping (3)

MozzarellaTopping v CheeseTopping (4)

Axiom (1) means that cheesy pizzas are those pizzas that have at least one cheese
topping, in which ≡ denotes an equivalence. Axiom (2) means that American pizza is
a pizza, in which v denotes a subsumption relation. Axiom (3) means that American
pizza contains at least one mozzarella topping. And axiom (4) means that mozzarella
topping is a cheese topping.

A formal ontology consists of a set of axioms. These axioms describe the explicit
knowledge in the ontology and can interact with each other to infer implicit knowledge.
For example, by combining axioms (3) and (4) we can infer that AmericanPizza v
∃hasTopping.CheeseTopping. Combining with axioms (1) and (2) we can further



infer that AmericanPizza v CheeseyP izza, i.e. American pizza is a cheesey pizza.
Such inference can be realised by an automatic reasoner.

When a class expression C can be instantiated (i.e. it is possible for it to have in-
stances in the domain), we say that C is satisfiable. Checking whether a class is satisfi-
able in an ontology is a reasoning task that can also be accomplished by a reasoner.

2.2 Presupposition and Cooperative Question Answering

Following on from ideas of Frege, many philosophers of language use the term presup-
position to refer to a special condition that must be met for a linguistic expression to
have a denotation [2]. For example, the question “have you stopped feeding your dog?”
presupposes that the addressee has a dog and has been feeding it; it can only be suc-
cessfully answered if these conditions are satisfied – otherwise the question is in some
sense meaningless.

The fact that a question may have presuppositions, and that these may represent
misconceptions on the part of the asker, has been exploited by researchers working on
principles for cooperative question-answering from databases [9]. For instance, if a user
asks “Who passed CMSC 420 in the fall semester of 1991?”, the answer nobody is not
cooperative if in fact CMSC 420 was not taught in the fall semester of 1991. In this
case, the user should be alerted to the failed presupposition in their question. Such a
failure can be computed in this case by detecting a subpart of the original question that
produces an empty set of results (informally, CMSC 420 in the fall semester) [10].

In this paper we take a similar approach, identifying presuppositions of competency
questions associated with an ontology. In this case, the aim is not to provide better
answers to the questions but to help the user detect when their ontology is out of step
with the kinds of questions they would like to be able to ask.

2.3 From Competency Questions To Authoring Tests

(Informal) CQs are expressions of questions that an ontology must be able to an-
swer [23]. We consider these to be natural language sentences that express patterns
for types of question people want to be able to answer with the ontology. The ability
to answer questions of the type indicated by a CQ meaningfully can be regarded as a
functional requirement that must be satisfied by the ontology.

Example 1. Below are some example CQs:

– “Which mammals eat grass?” (in an animal ontology)
– “Which processes implement an algorithm?” (in a software engineering ontology)

The first of these suggests a specific pattern, which (when the ontology is complete)
could perhaps be expressed as a single SPARQL 1 query such as:

select ?m where
{?m type Mammal . ?g type Grass . ?m eat ?g}

1 http://www.w3.org/TR/sparql11-overview/



The second (interpreted with “an” having wide scope2) provides a pattern that will
apply to a number of possible queries. This pattern might be thought of as a template
for SPARQL queries, where certain slots will be filled in before the query is presented
to the ontology. When the ontology is complete, this might look something like:

select ?p where
{?p type Process . $X type Algorithm . ?p implements $X}

where $X is to be filled in (at query presentation time) with whatever algorithm (in the
ontology) in which the user is interested.

The examples show that a CQ can suggest a single desired query (as in the first case)
or a set of possible queries (as in the second). In the following, we will abstract away
from this distinction and, for instance, talk about “answering a CQ” as a shorthand for
“answering the queries implied by a CQ”. 3

Compared to more formal requirement specifications, CQs are particularly useful
to ontology authors less familiar with DLs because CQs are in natural language, are
about domain knowledge, and do not require understanding of DLs. Hence in ontol-
ogy authoring practice, CQs help authors to determine the scope and granularity of the
ontology, and to identify the most important classes, properties and their relations.

From a linguistic point of view, such questions also have presuppositions about the
domain of discourse that have to be satisfied:

Example 2. In order to meaningfully answer the CQ “Which processes implement an
algorithm?” it is necessary for the ontology to satisfy the following presuppositions:

1. Classes Process, Algorithm and property implements occur in the ontology;
2. The ontology allows the possibility of Processes implementing Algorithms;
3. The ontology allows the possibility of Processes not implementing Algorithms.

The last two of these perhaps need some justification. If case 2 were not satisfied, the
answer to all the queries (for all $X) would be “none”, because the ontology could never
have a Process implementing an Algorithm. This would be exactly the kind of unco-
operative answer looked at by the previous work on cooperative question-answering[9].
It is hard to imagine an ontology author really wanting to retrieve this information.
Rather, this can be taken as evidence of possible design problems in the ontology. If
case 3 were not satisfied, the answer to all the queries (for all $X) would be a list of all
the Processes. This would mean that the questions would be similarly uninteresting to
the ontology author, again signalling a possible problem in the ontology.

CQs can have clear and relatively simple syntactic patterns. For example, the CQs
in Example 1 are all of the following semi-formal pattern:

Which [CE1] [OPE] [CE2]?

2 Alternative formulations with the same intention might be “Which processes implement a
given algorithm?”, “For any algorithm, what processes implement it?” or “Which processes
implement this algorithm?”.

3 It is also possible to formulate the queries in a way such that the answers to the CQ are not
instances of Mammal or Process, but their sub-classes. Nevertheless, our discoveries pre-
sented later in the paper will not be affected by such a difference.



where CE1 and CE2 are class expressions (or individual expressions as a special case)
and OPE is an object property expression. This pattern asks for instances or subclasses
of CE1 that can have an OPE relation to some instance of CE2. With such patterns,
the presuppositions shown in Example 2 can be verified automatically:

1. CE1, CE2 and OPE should occur in the ontology;
2. CE1 u ∃OPE.CE2 should be satisfiable in the ontology;
3. CE1 u ¬(∃OPE.CE2) should be satisfiable in the ontology. Here ¬ is the con-

structor for negation.

We call tests of this kind which can be derived from CQs Authoring Tests (ATs).
The idea of CQOA is to support the ontology author in the formulation of machine

processable CQs for their ontology. In an implemented system, users will be allowed to
either import their predefined CQs or enter new CQs in a controlled natural language.
The authoring environment will identify the patterns of the inputted CQs and generate
appropriate ATs. With the ATs, certain aspects of the answerability of the CQs can then
be tested by the authoring environment to find places where the ontology does not yet
meet the requirements. If there is a change in the status of these ATs from true to false
or vice versa, the system will report the result to the users. The pattern identification,
AT generation and testing procedures are all transparent to authors hence they can be
utilised by novice ontology authors.

3 Related Work

Exploring competency questions (CQs) in ontology development is not a new idea in
itself [23, 17, 21]. The NeOn methodology [20] has worked towards an ontology spec-
ification task, which results in a set of natural language CQs. A visual solution based
on a goal-based methodology for capturing CQs has been presented in [8]. A formali-
sation of CQs into SPARQL queries [24] and CQs into DL queries [13] have also been
implemented. An algorithm for checking natural language CQs has been developed by
[3]. Nevertheless, these works focused on limited forms of CQs such as “What is . . . ?”,
“How much . . . ?”. A wider spectrum of CQs and their usefulness in ontology authoring
were not investigated. Moreover, they are more concerned with answering particularly
CQs, but less with whether the answers are meaningful w.r.t. (with respect to) the pre-
suppositions.

Testing is also widely used in different ontology authoring systems to provide feed-
back to authors on the quality of the ontology. The Rabbit interface [5] and the Simpli-
fied English prototype [16] offer syntactic checking such as incorrect words or disal-
lowed input. Systems such as Protégé 4 and OntoTrack [11] use reasoners to offer basic
semantic checking such as inconsistency checking. Systems such as Roo [6] intend
to advise the user of the potential authoring consequences. Justification engines [11]
are also used to explain why certain deductions have been made. Systems such as the
OWL Unit Test Framework in Protégé, Tawny-OWL [12] and OntoStudio 5 allow users

4 http://protege.stanford.edu
5 http://www.semafora-systems.com/en/products/ontostudio/



to define unit tests and run them in the authoring environment. Generic tests such as
consistency, input validity do not capture the requirements that are specific to the on-
tologies in question. The author-defined tests allow the expression of such requirements
but require further knowledge and skills of ontology technologies. For novice authors,
designing a test suite for an ontology is hardly easier than designing the ontology itself.

4 An Empirical Study of Competency Questions

In contrast to the existing work, we combine CQs and testing in ontology authoring,
using CQs as a means for novice authors to express requirements, and derive tests from
these CQs to capture their presuppositions. We aim to understand the different kinds
of CQs that are asked by authors in real-world scenarios, to ensure that the ontology
can respond optimally to them. We therefore address research question 1 by analysing
real-world CQs.

4.1 Competency Question Collection

Due to the flexibility permitted in CQ construction, it was not feasible for us to enumer-
ate all possible CQs. In order to cover CQs used in different domains and from authors
with different levels of expertise, we collected 92 CQs from the Software Ontology
Project 6 and 76 CQs from the Manchester OWL Tutorials in 2013. The software on-
tology project seeks to describe software such that software registries and repositories
can be adequately tagged and indexed; it is also used to describe the software that used
in the analysis of data. CQs in this project are proposed by the users of this ontology
and hence represent requirements from a professional point of view. The OWL tutorials
were events where basic ontology technologies were taught to participants, who were
mostly novice authors. In the tutorials , the Pizza ontology 7 was used as a show case
ontology and participants were asked to write CQs they would like to get answered with
the pizza ontology working as part of an ‘intelligent pizza finder’ application.

After obtaining the collection of questions, we removed invalid CQs, including:

1. Redundant questions;
2. Incomplete sentences that cannot be properly understood. For example, in the soft-

ware collection, one question is “What level of expertise is required?”. In this ques-
tion, it is not clear what the expertise is required for.

3. Sentences that are not really CQs. For example, in the pizza collection there is one
question “Should we include the oven type in the pizza definition? (eg wood fired
vs electric oven)”. Nevertheless, “What oven type is this pizza?” can be regarded
as a valid CQ.

4. Questions beyond the expressive power of a DL-based ontology language. For ex-
ample, in the software collection a question asks “How can I get problems fixed?”.

6 http://softwareontology.wordpress.com/2011/04/01/
user-sourced-competency-questions-for-software/

7 http://130.88.198.11/co-ode-files/ontologies/pizza.owl



The answer to such a How question should be a procedure that involves condi-
tions and actions. Whilst an ontology is mainly used for modelling of static domain
knowledge instead of dynamic procedures.

With the above invalid CQs removed, we obtained 75 valid CQs in the software
collection and 70 in the pizza collection.

4.2 A Framework for Patterns of Competency Questions

We analysed the collected CQs to identify the patterns to which they belong. We are
more interested in the semantic meaning of the CQs than their surface form. Hence we
omit the syntactic differences between variations with the same semantic meaning.

In order to represent the commonality and variability of different CQ patterns, we
employed the feature-based modelling method [14] and describe different CQ patterns
w.r.t. a set of features identified from our CQ collections:

1. Question Type determines the kinds of answer presented when answering the CQ:
(a) Selection question should be answered with a set of entities or values that sat-

isfy certain constraints. The CQs in Example 1 are all selection questions.
(b) Binary question should be answered with a boolean value, i.e. yes or no, indi-

cating the existence of any answer to a selection. For example, “Does this pizza
contain halal meat?” is a binary question corresponding to a selection question
“Which of these pizzas contain halal meat?”.

(c) Counting question should be answered with the number of different answers
to a selection question. For example, “How many pizzas have either ham or
chicken topping?” is a counting question. Its corresponding selection question
is “Which pizzas have either ham or chicken topping?”.

2. Element Visibility indicates whether the modelling elements, such as the class ex-
pressions and property expressions are explicit or implicit in the CQ. For example,
“What are the export options for this software?” has explicit elements Software and
Export Option, but also an implicit relation hasExportOption between softwares
and export options. Note that even implicit elements should occur in the ontology
to make the CQ meaningful.

3. Question Polarity determines if the question is asked in a positive or negative
manner, e.g. “Which pizzas contain pork?” v.s. “Which pizza has no vegetables?”.

4. Predicate Arity indicates the number of arguments of the main predicate:
(a) Unary predicate is concerned with a single set of entities/values and its in-

stances, e.g. “Is it thin or thick bread?”.
(b) Binary predicate is concerned with the relation between 2 sets of entities/values

and their instances, such as the eat and implement in Example 1.
(c) N-ary predicate is concerned with the relation among multiple (≥ 3) sets of

entities/values and their instances. Given the fact that DLs can only represent
unary and binary predicates, an N-ary predicate has to be represented as a con-
cept via reification. In the next section we will show how this affects the ATs.

5. Relation Type indicates the kind of relation for the main relation involved in the
CQ. As in DLs, CQs can have object property relations or datatype property rela-
tions. Note that a relation with more than 2 arguments or with its attributes has to
be represented by an entity via reification.



6. Modifier is employed to impose restrictions on some entities/values:
(a) Quantity modifier restricts the number of relations among entities/values.

i. It can be a concrete value or value range. For example “If I have 3 ingre-
dients, how many kinds of pizza I would make?” has a quantity modifier 3
on the number of pizza-ingredient relations for each pizza.

ii. It can be a superlative value or value range. For example, “Which pizza
has the most toppings?” has a quantity modifier most on the number of
pizza-topping relations for each pizza.

iii. It can also be a comparative value or value range. For example, “Which
pizza has more meat than vegetables?” has a quantity modifier more on the
number of pizza-meat and pizza-vegetable relations for each pizza.

(b) Numeric modifier is used to restrict the value of some datatype properties. Sim-
ilarly to the quantity modifier, it can be a concrete value or value/range, or a
superlative value, or a comparative value. For example, “What pizza has very
little (≤ 10%) onion and/or leeks and/or green peppers?”

7. Domain-independent Element is an element that can occur across different knowl-
edge domains. It is usually associated with some physical or cognitive measure-
ments. Some most commonly used domain-independent elements include:
(a) Temporal element in the CQ indicates that the CQ is about the time of some

event, e.g. “When was the 1.0 version released?”.
(b) Spatial element in the CQ indicates that the CQ is about the location of some

event. It does not have to be a physical location. For example “Where is the
documentation?” can be answered with a file path or a URL.

We consider the Question Type, Element Visibility and Question Polarity as sec-
ondary features as their variabilities do not change the required modelling elements of
the ontology. All other features are primary features. CQs with different primary fea-
tures are distinguished into different archetypes. CQs with different secondary features
in an archetype are distinguished into different sub-types. Together, they constitute a
generic framework to formulate different CQ patterns. For example, the CQ pattern
Which [CE1] [OPE] [CE2]? features a selection question with binary predicate of an
object property relation and all elements are explicit.

4.3 Result of the Study

With the feature-based framework, we identify 12 archetypes of CQ patterns in our
collection. They are shown in Table 1. The 1st column shows the ID of the archetype,
the 2nd and 3rd columns show the pattern and 1 example from our collection. The last
4 columns are the primary features. As we mentioned above, some archetype patterns
have sub-types. An example of the sub-types of archetype 1 is illustrated with Table 2,
in which the last 3 columns are the secondary features.

The archetypes and sub-types of CQ patterns we have identified cover all the CQs in
our collection, but we do not know directly how many CQs for other domains they will
cover. Nevertheless, the feature-based framework is flexible enough to describe CQs we
have not encountered. For example, a hypothetical CQ “How many pieces of software



Table 1. CQ Archetypes (PA = Predicate Arity, RT = Relation Type, M = Modifier, DE = Domain-
independent Element; obj. = object property relation, data. = datatype property relation, num. =
numeric modifier, quan. = quantitative modifier, tem. = temporal element, spa. = spatial element;
CE = class expression, OPE = object property expression, DP = datatype property, I = individual,
NM = numeric modifier, PE = property expression, QM = quantity modifier)

ID Pattern Example PA RT M DE
1 Which [CE1] [OPE] [CE2]? Which pizzas contain pork? 2 obj.
2 How much does [CE] [DP]? How much does Margherita Pizza

weigh?
2 data.

3 What type of [CE] is [I]? What type of software (API, Desk-
top application etc.) is it?

1

4 Is the [CE1] [CE2]? Is the software open source devel-
opment?

2

5 What [CE] has the [NM] [DP]? What pizza has the lowest price? 2 data. num.
6 What is the [NM] [CE1] to [OPE]

[CE2]?
What is the best/fastest/most robust
software to read/edit this data?

3 both num.

7 Where do I [OPE] [CE]? Where do I get updates? 2 obj. spa.
8 Which are [CE]? Which are gluten free bases? 1
9 When did/was [CE] [PE]? When was the 1.0 version released? 2 data. tem.

10 What [CE1] do I need to [OPE]
[CE2]?

What hardware do I need to run this
software?

3 obj.

11 Which [CE1] [OPE] [QM] [CE2]? Which pizza has the most toppings? 2 obj. quan.
12 Do [CE1] have [QM] values of

[DP]?
Do pizzas have different values of
size?

2 data. quan.

are most efficient when providing this service?” has a pattern How many [CE1] are
[NM] to [OPE] [CE2]?, which is a counting question sub-type in archetype 6.

After obtaining the competency question patterns, we analysed the distribution of
each pattern in our two scenarios. The numbers of competency questions belonging to
each archetype are shown in Table 3. We can see from this that among the 12 archetypes,
9 can be observed in the software collection, 9 can be observed in the pizza collection,
and 6 are shared by both collections. These 6 are also the most populated archetypes,
together covering 86.2% of all the collected CQs. This suggests that we might have
begun to find a kind of closure in terms of the most significant CQ types and that further
domains may not introduce many more important types.

We also examined the applicability of our framework to the 55 CQs mentioned in
previous work [20, 8, 24, 13, 3]. Most of those CQs are covered by our framework and
archetype 1 is the most populated one. The only CQ not definitely covered is “Why
universities are organised into departments?” [24]. This can be categorised to archetype
2 if the ontology represents the answer to why with a textual string. However, we believe
a proper modelling of such questions would require more complex formalisation.



Table 2. CQ Sub-types of Archetype 1 (QT = Question Type, V = Visibility, QP = Question Po-
larity, sel. = selection question, bin. = binary question, cout. = counting question, exp. = explicit,
imp. = implicit, sub. = subject, pre. = predicate, pos. = positive, neg. = negative)

ID Pattern Example QT V QP
1a Which [CE1] [OPE] [CE2]? What software can read a .cel file? sel. exp. pos.
1b Find [CE1] with [CE2]. Find pizzas with peppers and olives. sel. imp. pre. pos.
1c How many [CE1] [OPE]

[CE2]?
How many pizzas in the menu contains
meat?

cout. exp. pos.

1d Does [CE1] [OPE] [CE2]? Does this fotware provide XML editing bin. exp. pos.
1e Be there [CE1] with [CE2]? Are there any pizzas with chocolate? bin. imp. pre. pos.
1f Who [OPE] [CE]? Who owns the copyright? sel. imp. sub. pos.
1g Be there [CE1] [OPE]ing

[CE2]?
Are there any active forums discussing
its use?

bin. exp. pos.

1h Which [CE1] [OPE] no [CE2]? Which pizza contains no mushroom? sel. exp. neg.

Table 3. Numbers of CQs in Each Archetype Pattern

Archetype 1 2 3 4 5 6 7 8 9 10 11 12
Software Collection 38 11 1 1 0 4 5 5 3 7 0 0
Pizza Collection 23 7 4 0 5 1 0 22 0 2 5 1
Total 61 18 7 1 5 5 5 27 3 9 5 1

5 Answerability of Competency Questions

In this section, we try to address research question 2 by generating ATs from CQs and
showing that these ATs can be checked automatically. In contrast to previous work that
attempts to find answers to concrete CQs, we investigate whether or not the CQs can be
meaningfully answered.

5.1 Presuppositions in Competency Question Features

In CQOA, we are interested in whether the ontology contains the knowledge required
to answer CQs meaningfully. Such knowledge requirements are closely related to the
presuppositions in the CQs.

Given that our framework describes the CQs in terms of a set of features, we first
analyse the presuppositions implied by different variations of each feature:

1. Question Type: regardless of the question type, the modelling elements mentioned
in the question should occur in the ontology. Classes should also be satisfiable.
(a) Selection question asks for the answers satisfying certain constraints. The on-

tology should allow some answers to satisfy the constraints. For example,
“Which pizzas contain pork?” implies that pork is allowed to be contained
in pizzas, i.e. Pizza u ∃contains.Pork should be satisfiable. Otherwise, no
pizza can contain pork at all. The ontology should also allow some entities
to NOT satisfy the constraints. For example, the CQ above implies that it is
possible for some pizza to contain no pork, i.e. Pizza u ∀contains.¬Pork



is satisfiable. Otherwise, any pizza must contain pork and the “contains pork”
part in the CQ becomes useless.

(b) Binary question asks whether there is an answer satisfying the constraint. It
does not have the two satisfiability presuppositions.

(c) Counting question asks for the number of the answers satisfying the constraints.
It assumes the possibility of some answer satisfying the constraint and also
some answer not satisfying it. Hence it has the satisfiability presuppositions.

2. Element Visibility: regardless of the visibility of a modelling element, it should
always occur in the ontology to make the CQ answerable. Nevertheless, an implicit
element does not appear in the CQ hence its corresponding name in the ontology
cannot be directly obtained. This name can be derived from related entities. For
example, in “What are the export options for this software?” we can name the
implicit relation hasExportOption. Otherwise it can be assigned by the author.

3. Predicate Arity: the arity of the predicate affects how it should occur in the ontol-
ogy. Modern ontology languages support both unary (i.e. classes) and binary (i.e.
properties) predicates. Hence their names can directly occur in the ontology. How-
ever, N-ary predicate has to be represented as a class via reification. This leads
to the occurrence of other implicit predicates. For example, in “What is the best
software to read this data?” the predicate read has 3 arities, namely the software,
the data, and the performance. Hence Reading should occur in the ontology as a
Class instead of a Property. Moreover, there should be 3 more implicit predicates,
namely the hasSoftware, the hasData and the hasPerformance.

4. Relation Type: as the name suggests, the meta-type of a property occurring in the
ontology is determined by the type of relation it represents in the CQ. In other
word, if a property P is between two entities, then it is presupposed that P is an
instance of OWL:ObjectProperty. If P is between an entity and a value, then
it is presupposed that P is an instance of OWL:DatatypeProperty.

5. Modifier: the modifiers further impose restrictions on answers of the CQ.
(a) Quantity modifier has a similar effect as question type on the satisfiability

presupposition of certain class expressions in the ontology.
i. If the modifier is a concrete value or range, then as for a selection questions

it presupposes that potnetial answers are allowed to satisfy, as well as not
to satisfy, this modifier. For example, “If I have 3 ingredients, how many
kinds of pizza can I make?” implies that the ontology allows pizzas with 3
ingredients and ones with fewer or more than 3 ingredients, i.e. Pizzau =
3 hasIngredient.Ingredient and Pizza u ¬(= 3 hasIngredient.
Ingredient) should both be satisfiable in the ontology.

ii. If the modifier is a superlative value or value range, then the ontology
should allow answers with multiple cardinality values on the predicate on
which the modifier is imposed. For example, in “Which pizza has the most
toppings?” the presupposition is that pizzas are allowed to have different
numbers of toppings otherwise all pizzas will have exactly the same num-
ber of toppings. More formally, this means that for each number n ≥ 0,
Pizza u ¬(= n hasTopping.Topping) should be satisfiable.

iii. If the modifier is a comparative value or value range, then the ontology
should allow an answer with the required comparative cardinality val-



ues on the different relations being compared, as well answers without
the required comparative cardinality values. For example, “Which pizza
has more meat than vegetables?” presupposes that pizzas are allowed to
have more meat than vegetables otherwise none of the pizza is an an-
swer. More formally this means that for some number n ≥ 0, Pizzau ≤
n has.V egetable and Pizzau ≥ n + 1 has.Meat should both be satis-
fiable. It also presupposes that pizzas are allowed to have no more meat
than vegetables otherwise all pizzas have more meat than vegetable. More
formally this means that for some number n ≥ 0, Pizzau ≤ n has.Meat
and Pizzau ≥ n has.V egetable should both be satisfiable.

(b) Numeric modifier has similar presuppositions to a quantity modifier. In the con-
crete value or value range case and comparative value case, the CQ carries the
presuppositions that the ontology should allow answers satisfying the modifier
and those not satisfying the modifier. In the superlative value case, the CQ car-
ries the presupposition that the ontology should allow multiple values on the
relation on which the modifier is imposed.
Furthermore, the range of the property on which the modifier is imposed must
be a comparable datatype, such as integer, or float, otherwise the question can
not be answered meaningfully.

6. Domain-independent Element in the CQ can also affect the meta-type and type
of some modelling elements in the ontology. The temporal element is usually as-
sociated to some temporal datatypes. For example, “When was the 1.0 version re-
leased?” has presuppositions that the wasReleasedOn is a datatype property, and
that the range of wasReleasedOn is one of the temporal datatype, such as data-
time. It is possible to use some other datatypes, such as integer to denote the year
of release, but this is not considered a best practice.
The spatial element is not necessarily representing a geographical location hence it
is hard to determine the type of its corresponding element in the ontology.

5.2 Formalising the Authoring Tests

From the analysis in Sec. 5.1, we realise that the features in the CQs are related to certain
categories of presuppositions. Each of these categories contains parameter(s) derived
from the CQ and can be realised by some checking in the ontology. ATs formalise this
idea. We summarise the ATs in Table 4. In this table the 1st column are the ATs, the 2nd
column are the parameters for each AT and the 3rd column shows how each AT can be
checked with ontology technologies. We omit the formalisation of some ATs, such as
those associated with comparative numeric modifiers, because such features were not
observed in our collection; they can be formalised in a similar manner as the ones in the
table.

As one can see, all of these ATs can be checked automatically. Occurrence can be
checked directly against the ontology. Meta-Instance can be checked via RDF reason-
ing. All the others can be checked with ontology reasoning.

In an implemented system, we offer users a controlled natural language to input
CQs based on the patterns identified earlier. Hence the archetype and/or sub-type of
input CQs are implicitly specified by users and automatically identified by the system:



Table 4. Authoring Tests (u means conjunction, ¬ means negation, ∃P.E means having P rela-
tion to some E, = nP.E (≥ nP.E,≤ nP.E) means having P relation(s) to exactly (at least, at
most) n E(s), ∀P.E means having P relation (if any) to only E, > means everything)

AT Parameter Checking
Occurrence [E] E in ontology vocabulary

Class Satisfiability [CE] CE is satisfiable

Relation Satisfiability
[CE1]

CE1 u ∃P.E2 is satisfiable,
CE1 u ¬∃P.E2 is satisfiable

[P]
[E2]

Meta-Instance
[E1]

E1 has type E2[E2]

Cardinality Satisfiability

[CE1]
CE1u = nP.E2 is satisfiable,
CE1u¬ = nP.E2 is satisfiable

[n]
[P]

[E2]

Multiple Cardinality (on superlative
quantity modifier)

[CE1]
∀n ≥ 0, CE1 u ¬ = nP.E2 is
satisfiable

[P]
[E2]

Comparative Cardinality (on quan-
tity modifier)

[CE1]
∃n ≥ 0, CE1u ≤ n P1.E1 and CE1u ≥
n+1 P2.E2 are satisfiable, ∃m ≥ 0, CE1u ≤
m P2.E2 and CE2u ≥ (m + 1) P1.E1 are
satisfiable

[P1]
[P2]
[E1]
[E2]

Multiple Value (on superlative nu-
meric modifier)

[CE1] ∀D ⊆ range(P ), CE1 u ¬∃P.D is
satisfiable[P]

Range
[P] > v ∀P.E
[E]

For example, CQ “What is the best software to read this data?” belongs to archetype
CQ pattern 7 What [CE1] is [NM ] to [OPE] [CE2]?

From the CQ and its pattern the system can automatically extract the features and
elements of the CQ: it is a selection question (“What”) containing a 3-ary (among “soft-
ware”, “data” and some performance) predicate (“read”) with a superlative numeric
modifier (“best”), which should be modelled as a class and some implicit object and
datatype properties, whose names can be generated from contexts or assigned by users.

Then the system can automatically generate and parameterise the following ATs:

1. Occurrence tests of Software, Data, Read, hasSoftware, hasPerformance
and hasData. The first 3 should occur as classes and the last 3 as properties. Read
is the class representation of the “reading” predicate in the CQ;

2. Relation Satisfiability tests of (Read, hasSoftware, Software), (Read, hasData,
Data) and (Read, hasPerformance, >), which guarantee that the ontology al-
low some Read to be associated with Software, Data and to have performance;

3. Meta-Instance test of (hasSoftware, ObjectProperty), (hasData,
ObjectProperty) and (hasPerformance,DatatypeProperty), which fur-
ther specify the meta-types of the 3 properties;



4. Multiple Value on superlative numeric modifier test of (Read, hasPerformance),
which guarantees that instances of Read can have different performance values;

5. Range test of (hasPerformance, decimal∪ float∪ double), which ensures that
the value of hasPerformance must be a comparable numeric value, so that one
can find the best performance;

As the pipeline shows, the procedure from CQs (in a controlled natural language)
to ATs can be automated. Eventually, all these ATs can be automatically checked and
results can be provided to users.

6 Conclusion and Future Work

We have investigated the problem of requirement description and testing in ontology
authoring for novice authors. We proposed Competency Question-driven Ontology Au-
thoring (CQOA) by leveraging the ideas of CQs and test before styles of software de-
velopment. To formally describe different real-world CQs, we have collected CQs from
the software and pizza domains and analysed their commonalities and varieties with a
set of features. It showed that the CQ patterns we identified covered all the collected
CQs. To automatically test whether a CQ can be meaningfully answered, we inves-
tigated the presuppositions implied by CQ features. All these presuppositions can be
parameterised and formalised into automatic ATs. Although our research were based
on CQs in English, our results are transferable to other languages.

In future, we will implement the presented pipeline both as a Protégé plug-in and as
a standalone system, supported by the TrOWL reasoner [22]. We will design and con-
duct experiments with human participation to compare their efficiency and productivity
with and without the AT assistance. We are interested in extending the current frame-
work by investigating more CQs, features and presuppositions. For example, it is diffi-
cult to formalise the spatial element presupposition in the current framework; we plan to
address it by looking into ontology design patterns or foundational ontologies [4]. We
would also like to investigate presuppositions of a finer linguistic “granularity”. E.g.
“Which pizzas contain pork?” appears to presuppose the existence of multiple types of
pizza that contain pork while “Which pizza contains pork?” does not. Finally, some ATs
such as the cardinality ones (Table 4) lead to a large number of tests, and we plan to
investigate optimising the testing of such ATs.
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