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Abstract. Due to the distributed nature of Linked Data, many re-
sources are referred to by more than one URI. This phenomenon, known
as co-reference, increases the probability of leaving out implicit semanti-
cally related results when querying Linked Data. The probability of co-
reference increases further when considering distributed SPARQL queries
over a larger set of distributed datasets. Addressing co-reference in Linked
Data queries, on one hand, increases complexity of query processing. On
the other hand, it requires changes in how statistics of datasets are taken
into consideration. We investigate these two challenges of addressing co-
reference in distributed SPARQL queries, and propose two methods to
improve query efficiency: 1) a model named Virtual Graph, that trans-
forms a query with co-reference into a normal query with pre-existing
bindings; 2) an algorithm named Ψ , that intensively exploits parallelism,
and dynamically optimises queries using runtime statistics. We deploy
both methods in an distributed engine called LHD-d. To evaluate LHD-
d, we investigate the distribution of co-reference in the real world, based
on which we simulate an experimental RDF network. In this environ-
ment we demonstrate the advantages of LHD-d for distributed SPARQL
queries in environments with co-reference.

Keywords: #eswc2014Wang, SPARQL, Linked Data, distributed query,
dynamic optimisation, co-reference

1 Introduction

Over years a large amount of Linked Data have been published by numerous
independent individuals and organisations. When referring to resources, it is
desirable to reuse existing URIs [10]. However, it is impractical to guarantee
that one resource is only bound to a single URI due to the distributed nature
of Linked Data. On class level, common vocabularies, such as Friend of a Friend
(FOAF)1, and Dublin Core Metadata Initiative (DCMI)2, are shared in many
RDF datasets. On instance level, poor agreement is made [7]. For example, 23

1 http://www.foaf-project.org/
2 http://www.dublincore.org/documents/dcmi-terms/
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different URIs are found referring to the person Tim Berners-Lee out of 1.118
billion triples [8]. This phenomenon, that multiple URIs referring to the same
resource, is known as co-reference. Co-referent URIs are semantically equal3

from the perspective of Linked Data queries. Without taking co-reference into
account, Linked Data queries may leave out valid results that are not explicitly
available.

A variety of work has been done to identify co-reference in Linked Data
(i.e. co-reference resolution) [7,4]. Once resolved, a pair of co-referential URIs is
expressed as an owl:sameAs [3] assertion, which states that two URIs are seman-
tically equivalent. By examining existing owl:sameAs statements, it is possible
to retrieve additional semantically valid results when querying Linked Data.
However, the following issues persist in the above process:

1. A näıve approach to query Linked Data with co-reference requires three
steps. First, retrieving co-reference for every concrete URI in a given query
by consulting owl:sameAs statements. Second, executing the original query,
as well as its co-referential queries that are obtained by replacing one or
more original URIs with their co-reference. Third, combining results of all
previously executed queries. This approach results in significant query over-
heads, and each co-referential query can only be optimised on its own (i.e.
the total costs of all co-referential queries are not necessarily minimised).

2. A small amount of co-reference can potentially lead to a large amount of
additional results. Thus, query processing with enhanced performance is de-
sirable.

3. Query efficiency is closely related to the statistics of datasets. On a large
scale, it is unlikely to have pre-computed statistics taking co-reference into
account.

Regarding the above issues, we propose two methods to improve the perfor-
mance of Linked Data queries in the presence of co-reference:

– A model named Virtual Graph (VrG), that merges all co-referential queries
into a normal query with pre-existing bindings. VrG saves the overheads
of sending many queries, and especially, enables optimisation regarding all
co-referential queries.

– An algorithm named Ψ , that identifies independent sub-queries, which can be
optimised and executed independently in parallel, without increasing com-
munication traffic. It is worth mentioning that Ψ helps increase degree of
parallelism, and can be as well used in engines that do not take co-reference
into account.

Furthermore, sub-queries identified by the Ψ algorithm are optimised at run-
time (i.e. dynamic optimisation [11]), using runtime statistics instead of pre-
computed statistics. Based on the aforementioned methods, we implement a dis-

3 In practice, co-referential URIs usually refer to closely related resources rather than
the exact same resource. However, this issue is not essential in this paper.
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tributed SPARQL engine, named LHD-d4 that is able to process co-referential
queries with improved efficiency.

To evaluate our approach, we investigate co-reference in the real world. Based
on the distribution of real-world co-reference, we propose a method to simulate
co-reference for arbitrary datasets. We set up a RDF network containing co-
reference using an evaluation framework [15,16] that extends the Berlin SPARQL
Benchmark (BSBM) [2].

The remainder of this paper is organised around presenting and demonstrat-
ing the effectiveness of VrG and Ψ through the evaluation of LHD-d. In section
2 we provide the background of this work and review related approaches that
LHD-d is compared to. The core techniques of LHD-d, VrG and Ψ , are described
in section 3 and 4 respectively. In section 5 we describe how VrG and Ψ are de-
ployed alongside dynamic optimisation in LHD-d. After that, in section 6, we
investigate the distribution of co-reference in the real world, based on which
we propose a method to simulate RDF networks having co-reference. We also
describe the environment in which LHD-d is evaluated and compared with re-
lated approaches. The performance of LHD-d is thoroughly examined in two
situations, respectively with or without the presence of co-reference. In section 7
we evaluate LHD-d without taking co-reference into account (by disabling VrG)
and compare it with existing engines. This evaluation primarily demonstrate
the effectiveness of using Ψ and runtime-statistic-based optimisation. In section
8 we assess LHD-d with the presence of co-reference and compare it with the
aforementioned näıve approach. This evaluation focuses on demonstrating the
effectiveness of VrG. Finally we give our conclusions and future plans in section
9.

2 Related Work

In this section we discuss the current state and issues of co-reference in Linked
Data, and review relevant approaches of Linked Data query processing.

2.1 Co-reference in the Linked Data Cloud

The ubiquity of co-reference in Linked Data motivates many researchers to inves-
tigate the similarity between URIs and to infer co-reference relationships [7,14];
to study the semantic and structure of co-referential identifiers [9], and to develop
efficient methods for co-reference representation and management [4].

Co-reference can be explicitly presented by owl:sameAs. However, many co-
referential URIs are inexplicit in reality. To determine equivalent URIs, or co-
reference resolution, it requires to investigate the semantic and relationship of
relevant URIs. Taking [7] as an example, the authors proposed a method that

4 LHD stands for Large scale, High performance and Distributed. “d” stands for
dynamic optimisation.
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uses inverse-functional property, owl:InverseFunctionalProperty5, to infer the
equivalence of URIs. Similarly, owl:FunctionalProperty, owl:maxCardinality, and
owl:cardinality have also been examined to infer owl:sameAs statements [6].
Furthermore, a scalable candidate selection algorithm is proposed by Song et
al. [14]. This algorithm firstly identifies properties that have discriminability
and coverage larger than a certain threshold, as keys. These keys are used to
disclose additional co-referential URIs closely related in semantics. In practice,
co-reference resolution services, such as sameas.org6 [4], have been established.

It is realistic to assume that there are a large number of existing owl:sameAs
statements provided either by datasets themselves or third-party services. In
this work we do not deal with co-reference resolution. We focus on improving
the efficiency of Linked Data queries taking existing owl:sameAs statements into
account. It is straightforward to add co-reference resolution as an extra layer on
top of LHD-d.

2.2 Distributed Query Processing over Linked Data

Query processing over Linked Data has attracted much attention in recent years.
As a result, many distributed SPARQL engines, such as DARQ [12], DSP [15],
FedX [13], SPLENDID [5] and LHD [16], have been proposed to address various
issues of Linked Data queries. However, none of these engines investigate the
possibility of taking co-reference into Linked Data queries7. Since LHD-d will
be evaluated without co-reference as well, it is worth providing details of rep-
resentatives of existing engines. Evaluation results of [15,5,13,16] suggests that
FedX and LHD have certain advantages over other approaches. We provide their
details here and will compare LHD-d to these two engines in section 7.

FedX does not require statistics of datasets. Given a query, FedX sends ASK
queries to all known datasets to identify those relevant to a certain triple pat-
tern. This selection is accurate but introduce additional network overheads. The
optimisation of FedX adopts a greedy algorithm that picks the minimum from
triple patterns that are not executed. Triple patterns are ranked using heuristics,
according to the number and position of variables in those triple patterns. As a
result, it does not distinguish arbitrary two triple patterns having variables at
the same positions. FedX adopts an novel method that executes triple patterns
using multiple threads, which significantly improves query efficiency.

LHD follows almost an opposite direction of FedX. It requires detailed statis-
tics that are retrieved from VoID [1] files. However, as admitted by the authors,
detailed VoID files are unlikely to be available on a large scale. Relevant datasets
are selected using the predicate-matching method, that a triple pattern is as-
signed to datasets that contains its predicate. This method is less accurate than

5 The value of an inverse-functional property uniquely identifies the subject of this
property.

6 www.sameas.org
7 To the best of our knowledge, the OpenLink Virtuoso is the only distributed engine

that provides support of co-reference in a recent release. However, Virtuoso focus on
resolving co-reference rather than improving query efficiency.

www.sameas.org
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the ASKing approach of FedX, but causes no extra network overhead. LHD
adopts dynamic programming that exhaustively searches for the optimal plans,
and the quality of query plans only depends on the accuracy of VoID statistics.
A sophisticated parallel query execution is used in LHD to maximumly exploit
bandwidth of connections to remote datasets.

3 Virtual Graph: Merging Co-reference into SPARQL
Queries

Assuming there is a query {?x foaf:knows p0} and a co-reference statement
{p0 owl:sameAs p1}, results of both {?x foaf:knows p0} and {?x foaf:knows
p1} are semantically valid for the original query. For convenience, we say two
queries are co-referential if there is a mapping between these two queries that
maps a concrete URI to either itself or its co-reference. Also, we refer to the
result set extended by co-reference (including original results) as co-referential
results. Using existing owl:sameAs statements in the Linked Data cloud, it is
straightforward to gather co-referential results by executing a given query and
all co-referential ones. However, this method is not practical to handle complex
queries, since we have to execute the Cartesian product of the co-reference of all
triple patterns. To address this issue, we propose a model called Virtual Graph
(VrG) that enables simultaneous optimisation and execution of all co-referential
queries.

During query execution, variables are gradually bound to values. Following
the same idea, VrG regards a concrete node as a variable that is bound to one
value. When taking co-reference into account, a concrete node is regarded as a
variable whose values are the union of its original URI and all co-reference. An
example of Virtual Graph is shown in Figure 1.

foaf:knows

{?x  foaf:knows  p1}

?x ?p: p1

s1 owl:sameAs s2

foaf:knows

?x ?p: p1, p2

2

1

3

Fig. 1: 1© shows a triple pattern of a SPARQL query. The corresponding VrG is
shown in 2©. 3© is the VrG after taking an owl:sameAs statement into account.

In LHD-d, the transformation of VrG is applied at the beginning of query
processing. For each concrete URI denoted by v in a given query, our engine
firstly generates a query {v owl:sameAs ?coref} to all datasets that may contain
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co-referential URIs of v. Then v is replaced by a variable node ?v, whose values
are the union of v and its co-reference. The whole transformation is analogous
to the process shown in Figure 1. The essential of VrG is to enable query op-
timisation algorithms to produce optimal plans w.r.t all co-referential queries.
Also it enables query engines to better exploit parallelism.

4 Ψ : Parallel Sub-Query Identification

SPARQL queries are composed by Basic Graph Patterns (BGPs), which are a
set of conjunctive triple patterns. A BGP can be regarded as a connected graph
whose nodes (or vertices) are subjects and objects and whose triple patterns are
edges. We observed that given two edges (triple patterns) whose shared node
is concrete (e.g. {s p1 ?x. s p2 ?y}), they can be processed as two independent
sub-queries without increasing network traffic. This is because the number of
values of the shared node (which is concrete) is not affected by any edge that
connects to it. This observation also holds for variables whose number of values
does not change during execution.

We generalise the above observation as follows. We say a node has a fixed
cardinality if, during the execution of edges connecting to it, its number of val-
ues does not change more than a certain percentage. If “removing” all fixed-
cardinality nodes results in disconnected sub-graphs, these sub-graphs can be
optimised and executed independently and in parallel. For example, in the graph
shown in Figure 2, if both node B and C are fixed-cardinality nodes, then we
have three independent sub-graphs {AC,AB}, {BC}, {CD,BD}. If only B has
fixed cardinality, then the given graph cannot be further broken down8.

Fig. 2: If B and C are fixed-cardinality nodes, there are three independent com-
ponents shown by three different types of dash lines.

8 A more subtle case is that cardinality of both B and C are only changed by AB
and AC respectively, while BC and BD have comparable cardinality at B, and
BC and CD have comparable cardinality at C. That is, B and C are not fixed-
cardinality nodes w.r.t all connecting edges, but they are w.r.t some edges. In this
case {CB}, {CD,BD} can still be executed in parallel, and we say this two compo-
nents form a partial parallel group. However, identifying all partial parallel group
can be costly and not worthy in practice.
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Utilising the aforementioned idea, we propose the algorithm Ψ9 (shown in
Algorithm 1) that quickly breaks a connected graph into independent compo-
nents. At the beginning the algorithm creates a sub-graph for each edge (the loop
at line 1). Then all nodes are scanned and sub-graphs that share a none-fixed-
cardinality node are merged (the loop at line 4). At the end of this algorithm,
all remaining sub-graphs can be processed in parallel. The time complexity of
the first loop is linear to the number of edges |E|. The merge operation in the
second loop can be done in constant time by maintaining a hash table that maps
a node to the set of sub-graphs connected to it. Therefore, the complexity of the
second loop is linear to the number of vertices |V |. The complexity of Ψ (upper
bound) is O(max(|E|, |V |)).

Algorithm 1: Ψ(V,E)

input : A connected graph (V,E)
output: Independent sub-graphs

1 foreach e ∈ E do
2 sg{e} ← e;
3 end
4 foreach v ∈ V ∧ ¬ fixCard(v) do
5 merge sub-graphs containing v;
6 end

In practice, concrete nodes always have fixed-cardinality. Besides, if we can
know in advance that the cardinality of a variable node will probably remain
the same, that node can be regarded as a fixed-cardinality node as well. For ex-
ample, in {?person foaf:firstName ?frstN. ?person foaf:familyName ?fmName},
the cardinality of ?person is probably fixed during execution, since a dataset
usually contains both the first name and family name of a person10. Besides,
heuristics can be used to identify fixed-cardinality nodes. For example, if the es-
timations of the cardinality of a variable ?v w.r.t all its connected triple patterns
are close11, the number of bindings of ?v probably will not change. Also, if the
number of existing bindings of ?v is very small12, it probably will not change.
The effectiveness of the above two heuristics depends on the accuracy of cardi-
nality estimation. We enable these heuristics in LHD-d since runtime statistics
are used (described as below).

9 Ψ=PSI=Parallel Sub-query Identification
10 Property schemas are required to accurately predict the invariance of a node’s car-

dinality. For instance, in this example we need to know that both properties have
the same domain, have close numbers of distinct subjects, and are closely relevant.

11 90% < card(Ti,?v)
card(Tj ,?v)

< 110%, that Ti, Tj are triple patterns connecting to ?v.
12 |?v| < min(card(T, ?v))/10, that T connects to ?v.
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5 Dynamic Optimisation Using Runtime Statistics

The effectiveness of query optimisation is closely related to the accuracy of cost
estimation [11]. On a large scale, the most promising way of obtaining statistics
is from VoID [1] files provided by RDF datasets. However, these statistics are
unlikely to take co-reference into account. To this end, LHD-d exploits statistics
that become available at runtime, and interleaves query optimisation and exe-
cution. Each time a triple pattern is executed, its result size is used to estimate
cost of remaining triple patterns.

Cost estimation

We denote by sel(t, n) the selectivity of a node (either a subject or an object)
w.r.t a triple pattern t, and by |p| the number of triples having p as predicate in
relevant datasets. sel(t, n) and |p| are obtained from available statistics such as
VoID files. For more details of these values please refer to SPLENDID [5] and
LHD [16]. The cardinality card(t) of a triple pattern t : {s p o} is estimated as:

card(t) = |s| · sel(t, s) · |p| · |o| · sel(t, o) (1)

where |s| = 1/sel(t, s) if s is a variable having no bindings (i.e. an unbound
variable does affect the cardinality), otherwise |s| is the number of values of s.
|o| is determined in the same manner. During query execution, |s| and |o| are
updated as new bindings becoming available.

The cost of a triple pattern depends on the execution method. If it is eval-
uated over relevant datasets without attaching existing bindings, the cost is
estimated as card(t) · c, where c is a constant. If existing bindings, presumably
from s, are attached, the cost is estimated as |s| ·c+1 ·sel(t, s) · |p| · |o| ·sel(t, o) ·c.

Query optimisation

Given a (sub-)graph, we use a minimum-spanning-tree-based algorithm, shown
in Algorithm 2, to find the order of triple pattern execution in real time. Each
time the algorithm is called, it maintains a list of remaining edges ordered by
their costs from low to high. If an edge has two possible costs, the smaller one
is chosen. Then the algorithm returns and removes the minimum edge (i.e. an
edge belongs to the MST), which is going to be executed. It also returns edges
whose subjects and objects are all bound (i.e. edges that do not belong to the
MST), which are used to prune existing bindings.

Algorithm 2: NextEdges(V,E)

input : A connected (sub-)graph (V,E)
output: next a set of edges to be executed

1 edges← sort(E);
2 next← edges[0];
3 next← next ∪ findBoundEdges(edges);
4 E ← edges− next;
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The overview of query execution of LHD-d is shown as Algorithm 3. Firstly
a given query is broken into sub-graphs. For each sub-graph a new thread is
created. At each step, minimum-cost triple patterns are selected (lines 6) and
executed (line 7 to 8). Then cost of remaining edges (executed edges are removed
at the end of algorithm NextEdges(V,E)) are updated using runtime statistics
and Execute(V,E) is called recursively. It should be noticed that a sub-graph
can be further divided in future call of Execute(V,E) w.r.t updated edge cost.

Algorithm 3: Execute(V,E)

input : A connected (sub-)graph (V,E)

1 if E is empty then
2 return;
3 end
4 components← Ψ(V,E);
5 foreach sub-graph (V ′, E′) ∈ components create a new thread do
6 next← NextEdges(V ′, E′);
7 evaluate next[0];
8 use remaining edges of next to prune bindings;
9 update costs of edges in E′;

10 Execute(V ′, E′);

11 end

6 Experimental Environment

We use an evaluation framework that extends BSBM [2] to set up the experiment
environment. For more details of the evaluation framework please refer to [15,16].
In this section we further study the distribution of co-reference in Linked Data
to set up an environment in which LHD-d is evaluated.

6.1 Distribution of Co-Reference in Linked Data

Some research implies that co-reference follows a power law distribution [9],
without giving explicit evidence. We analyse the data of Billion Triple Challenge
(BTC) 201113, which can be regarded as a snapshot of real world Linked Data.
We counted the number of resources involved in 1, 2, 3 ... owl:sameAs statements
respectively, and produce the diagram shown in Figure 3. We find that points in
Figure 3 approximate a power law distribution p(x) = αx−β where β = 2.528.
The scale-free property of power law distribution allows us to replicate the real-
world co-reference distribution on a smaller scale.

Generation of co-reference is achieved by linking resources using owl:sameAs.
To reproduce the distribution of real-world co-reference, we use a power law

13 http://challenge.semanticweb.org/

http://challenge.semanticweb.org/
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Fig. 3: The horizontal axis presents categories of resources having 5, 10, 15 ...
co-reference respectively, while the vertical axis presents the number of resources
falling in each category.

random number generator that accepts two parameters which are the power law
exponent β = 2.528 and the number of elements (i.e. distinct resources that have
co-reference). For a given resource, we use this generator to decide the number
of owl:sameAs statements that link this resource with other randomly chosen
resources. We also take into account that resources of BSBM data fall into differ-
ent classes. We generate co-reference for each class separately to make sure that
resources are only equivalent to those of the same class. Furthermore, numbers
that are larger than the total number of instances of a class are discarded, since
the maximum number of co-references a resource can have is the cardinality of
the class to which it belongs.

6.2 Experimental Settings

We generate about 70 million triples using the BSBM generator, and 0.18 million
owl:sameAs statements following the aforementioned method. All the triples (in-
cluding the owl:sameAs statements) are distributed over 20 SPARQL endpoints
which are deployed on 10 remote virtual machines having 2GB memory each. All
SPARQL endpoints are set up using Sesame 2.4.0 and Apache Tomcat 6 with
default settings. Engines to be evaluated are run on a machine having an Intel
Xeon W3520 2.67 GHz processor and 12 GB memory.

In the following sections we will provide details of LHD-d, and evaluate it
afterwards in the above environment.

7 Evaluating LHD-d in the Absence of Co-reference

In this section we evaluate LHD-d without co-reference, and compare it with
up-to-date engines, namely FedX and LHD. In this evaluation VrG is disabled
in LHD-d, and we focus on demonstrating the effectiveness of using Ψ with the
runtime-statistic-based query optimisation.
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7.1 Evaluation Results and Analysis

The QPS, incoming traffic, outgoing traffic, and transmission rate of FedX, LHD
and LHD-d are shown in Figure 4a, 4b, 4c and 4d. “0” and “NA” stand for
failures of execution.

Q1 Q2 Q3 Q4 Q5 Q7 Q8 Q10 Q11

LHDd 0.4163 4.6033 2.2427 0.8486 0.0042 0.8105 1.7078 0.6088 0.1175

LHD 0.4084 2.1023 0.5047 0.0345 0.0045 0.0456 3.9397 0.5116 0.1137

FedX 0 0.9784 0.2382 0.1347 0 0.3499 0.7012 0.8520 0.1107
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LHDd 12.22 2.50 1.81 101.61 2527.53 0.56 1.78 4.39 0.14
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Q1 Q2 Q3 Q4 Q5 Q7 Q8 Q10 Q11

LHDd 12.936 1.908 0.697 13.571 1.412 0.064 0.434 1.969 0.004
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Fig. 4: Evaluation without co-reference

It is shown in Figure 4a that LHD-d has an higher QPS over LHD on most
queries. Especially, significant performance boost is shown on Q2, Q3, Q4 and
Q7. The boost on Q2 and Q4 is primarily due to increased transmission rate
(Figure 4d), on Q3 is due to decreased network traffic (Figure 4b and 4c), and
on Q7 is due to both factors. LHD-d is slower than LHD on Q8 (but still two
times faster than FedX), which is due to its relatively slow transmission rate.
On Q10 LHD-d shows slight improvement, but FedX is still the one with highest
QPS.

LHD-d produces the smallest amount of network traffic on most queries (Fig-
ure 4b and 4c). It is worthy noticing that in LHD-d parallelisation is determined
by the Ψ algorithm without increasing network traffic, and each sub-query is
optimised with an aim of minimum traffic. Compared to the network traffic of
FedX and SPLENDID (recalling that SPLENDID produces more traffic than
FedX), we conclude that using runtime statistics yields more accurate estima-
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tions and leads to query plans that are closer to optimal. The results further
reinforce the previous discussion that the existing cost models or VoID statistics
are not sufficiently accurate.

The transmission rate of LHD-d varies on different queries. On Q1, Q2 and
Q4 LHD-d has even higher transmission rate than LHD, while on Q3, Q7 and Q8
its transmission rate is relatively low. A closer look reveals that LHD-d produces
a small amount of network traffic on Q3, Q7 and Q8, and still has highest QPS
on these queries.

In summary, LHD-d better balances between reducing network traffic and
increasing average transmission rate, and thus shows a higher overall efficiency.
The primary advantage of LHD-d results from the Ψ algorithm and the usage of
runtime statistics. It also demonstrates that dynamic optimisation is promising
for large scale Linked Data queries, in which cases detailed statistics are difficult
to obtain.

8 Evaluating LHD-d in the Presence of Co-Reference

In this section we evaluate the efficiency of LHD-d with co-reference taken into
account (thus VrG is enabled), and compare it with the näıve approach of pro-
cessing co-referential queries described in section 1. In the näıve approach, each
co-referential query is executed individually using LHD-d without enabling VrG.
It still benefits from Ψ and runtime optimisation. This evaluation focuses on
demonstrating the effectiveness of VrG. To demonstrate the consequence of tak-
ing co-reference into account, we compare the performance of LHD-d with or
without co-reference. In the remainder of this section we use LHD-d∗ to repre-
sent the evaluation results obtained in the presence of co-reference, and LHD-d
to represent the results obtained without co-reference.

8.1 Evaluation Results and Analysis

We show in Table 1 that both LHD-d and the näıve approach produce the same
sizes of results with co-reference taken into account. This confirms the ability
of VrG to fully retrieve additional results due to co-reference. Meanwhile, the
result sizes are raised many times (even orders of magnitude on specific queries)
by the small proportion of additional co-reference statements. The result sizes of
Q5 and Q11 remain the same for different reasons. Q5 selects for products that
share the same feature with a given product. There are 14499 distinct products
in our dataset, all of which are already contained in the result of Q5 without
co-reference. By turning on co-reference, many more intermediate results are
generated (demonstrated by the network traffic of Q5 in Figure 5b), but the
final result does not change. Q11 does not have concrete subjects or objects, so
its result size remains the same.

Three factors are relevant to the significant amount of additional results.
First, the same vocabulary is shared by all endpoints. Second, in our datasets co-
reference exists between instances of all classes. Consequently, Cartesian product
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is likely to be produced by the co-reference of the concrete subjects and objects
in a query. Finally, instances of the same class have similar relationships with
instances of other classes. Therefore, each co-referential URI may well lead to a
valid result.

Table 1: Result sizes of co-reference

Q1 Q2 Q3 Q4 Q5 Q7 Q8 Q10 Q11

LHD-d∗ 7397 103 23 65510 14499 1579 101 32 10

Näıve 7397 103 23 NA NA NA 101 32 10

LHD-d 53 29 8 29 14499 63 21 12 10

We present the QPS, the incoming and outgoing traffic, and the transmission
rate of LHD-d∗, LHD-d, and the näıve approach respectively in Figure 5a, 5b,
5c and 5d. “0” and “NA” stand for time out.

It is shown in Figure 5a that the efficiency of query processing decreases
multifold times after introducing co-reference, especially for the näıve approach.
Moreover, the näıve approach runs out of time on several queries (Q4, Q5 and
Q7) that have a large result size. Though having low QPS on a few queries, LHD-
d∗, or VrG, substantially increase the efficiency of co-reference query processing.
Furthermore, on Q10 LHD-d∗ has an even higher QPS than LHD-d, indicating
a query plan that overcomes the negative impact of co-reference, is generated.
Q11 has no co-reference, and the three approaches show close QPS.

From the network traffic of both LHD-d∗ and the näıve approach (Figure 5b
and 5c), it is shown that co-reference significantly increase the sizes of intermedi-
ate results. Recalling that the usage of VrG is the only difference between LHD-d∗

and the näıve approach, we conclude that optimising co-reference queries w.r.t
all co-reference yields better query plans. On the contrary, although the näıve
approach produces optimal plans for each co-referential query, the total query
time is not well controlled. In the meantime, LHD-d∗ shows much smaller net-
work traffic over the näıve approach. LHD-d∗ and the näıve approach have the
same amount of traffic on Q11, which is slightly larger than that of LHD-d. The
extra traffic over LHD-d is due to searching for co-reference of Q11.

The transmission rate of LHD-d∗ are not always larger than that of LHD-
d. This is further confirms that VrG enables LHD-d∗ to generate query plans
that are tailored for co-reference. If the same LHD-d’s query plans are used, the
transmission rate of LHD-d∗ would always be no less than LHD-d, since more
traffic is generated in the case of LHD-d∗.
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Q1 Q2 Q3 Q4 Q5 Q7 Q8 Q10 Q11

LHDd* 0.0120 1.2048 0.4322 0.0014 0.0045 0.2262 0.5230 0.7748 0.1257

Native 0.0011 0.9607 0.0261 0 0 0 0.5369 0.0702 0.1291

LHDd 0.4163 4.6033 2.2427 0.8486 0.0042 0.8105 1.7078 0.6088 0.1175
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(a) QPS

Q1 Q2 Q3 Q4 Q5 Q7 Q8 Q10 Q11

LHDd* 416.01 3.73 117.37 347.77 7837.59 19.90 10.30 4.16 0.32

Native 66644.63 577.25 5109.97 0 0 0 36.20 205.67 0.31

LHDd 298.56 1.65 1.29 58.32 825.81 0.24 0.77 27.95 0.18
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(b) Incoming traffic

Q1 Q2 Q3 Q4 Q5 Q7 Q8 Q10 Q11

LHDd* 1241.14 9.04 71.78 1302.67 15959.15 63.47 27.70 11.24 0.24

Native 4128.88 26.47 138.85 0 0 0 41.37 110.45 0.24

LHDd 12.22 2.50 1.81 101.61 2527.53 0.56 1.78 4.39 0.14
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(c) Outgoing traffic

Q1 Q2 Q3 Q4 Q5 Q7 Q8 Q10 Q11

LHDd* 1.992 1.539 8.176 0.233 10.676 1.886 1.987 1.193 0.007

Native 7.769 57.999 13.696 0.000 0.000 0.000 4.165 2.220 0.007

LHDd 12.936 1.908 0.697 13.571 1.412 0.064 0.434 1.969 0.004

0

10

20

30

40

50

60

70

R
AT

E 
(M

B
/S

)

LHDd*-TRANSMISSION RATE

(d) Average transmission rate

Fig. 5: Evaluation with co-reference

9 Conclusion and Future Plan

In this paper we investigate efficiency issues of Linked Data queries in the pres-
ence of co-reference. For addressing these issues we propose two techniques called
Virtual Graph and Ψ . VrG is able to merge all co-referential queries into a sin-
gle query with pre-existing bindings. Thus, VrG enables query optimisation al-
gorithms to produce optimal plans w.r.t all co-referential queries. Ψ breaks a
query into sub-queries that can be optimised and executed in parallel. We com-
bine Ψ with runtime optimisation to improve query efficiency without relying on
detailed pre-computed statistics.

The aforementioned techniques are deployed in LHD-d. We compare LHD-d
with representative engines, LHD and FedX, without co-reference, and demon-
strate the advantage of using Ψ with runtime optimisation. We also evaluate
LHD-d in the presence of co-reference, and demonstrate that VrG significantly
improves query optimisation and thus reduces query response time.

In the future we plan to integrate co-reference resolution into our optimisation
techniques, which will significantly expand the ability of Linked Data queries. In
addition, it is worth further investigating optimisation techniques that consume
runtime statistics, since reliable statistics are unlikely to be available in large
scale Linked Data.
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