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Freddy Lécué, Robert Tucker, Veli Bicer, Pierpaolo Tommasi, Simone
Tallevi-Diotallevi, Marco Sbodio

IBM Research, Smarter Cities Technology Centre
Damastown Industrial Estate, Dublin, Ireland

{(firstname.lastname)@ie.ibm.com}

Abstract. Predictive reasoning, or the problem of estimating future observations
given some historical information, is an important inference task for obtaining
insight on cities and supporting efficient urban planning. This paper, focusing
on transportation, presents how severity of road traffic congestion can be pre-
dicted using semantic Web technologies. In particular we present a system which
integrates numerous sensors (exposing heterogenous, exogenous and raw data
streams such as weather information, road works, city events or incidents) to im-
prove accuracy and consistency of traffic congestion prediction. Our prototype
of semantics-aware prediction, being used and experimented currently by traffic
controllers in Dublin City Ireland, works efficiently with real, live and heteroge-
neous stream data. The experiments have shown accurate and consistent predic-
tion of road traffic conditions, main benefits of the semantic encoding.

Keywords: #eswc2014Lecue

1 Introduction
As the number of vehicles on the road steadily increases and the expansion of roadways
is remained static, congestion in cities became one of the major transportation issues
in most industrial countries [1]. Urban traffic costs 5.5 billion hours of travel delay and
2.9 billion gallons of wasted fuel in the USA alone, all at the price of $121 billion. Even
worse, the costs of extra time and wasted fuel has quintupled over the past 30 years.

Three ways can be considered to reduce congestion [2]; one is to improve the in-
frastructure e.g., by increasing the road capacity, but this requires enormous expenditure
which is often not viable. Promoting public transport in large cities is another way but it
is not always convenient. Another solution is to determine the future states of roads seg-
ments, which will support transportation departments and their managers to proactively
manage the traffic before congestion is reached e.g., changing traffic light strategy.

Prediction, or the problem of estimating future observations given some historical
information, spans many research fields, from Statistics, Signal Processing to Database
and Artificial Intelligence. Depending on the level of data representation considered,
a prediction problem [3] can be formulated as a standard machine learning classifica-
tion (for symbolic values) or regression (for numeric values) model [4]. In most of data
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stream mining applications, prediction is estimated by (i) correlating current and past
data (e.g., travel times for traffic application), (ii) identifying patterns using different
distance metrics [5], and (iii) selecting rules that are used for predicting future condi-
tions [6]. These approaches are designed for very fast processing and mining of (syntac-
tic and numerical) raw data from sensors [7]. They rarely utilize exogenous sources of
information for adjusting estimated prediction. Inclement weather condition, a concert
event, a car accident, peak hours are examples of external factors that strongly impact
traffic flow and congestion [8]. They also all fail in using and interpreting underlying
semantics of data, making prediction not as accurate and consistent as it could be, spe-
cially when data streams are characterized by texts or sudden changes over time.

We show that the integration of numerous sensors, which expose heterogenous, ex-
ogenous, raw data streams such as weather information, road works, city events is a way
forward to improve accuracy and consistency of traffic congestion prediction. To this
end, we exploit semantic Web technologies and adapt recent research work in semantic
predictive reasoning [9] as a way to annotate and interpret semantics of stream data. We
extend the latter work by (i) presenting the prediction system1 and architecture, (ii) fo-
cusing on the traffic congestion application, (iii) presenting various technical challenges
such as semantic data stream conversion, cross-stream reasoning, consistent prediction,
(iv) describing in details all data. As a system-based presentation, this work improves
[9] by focusing on InUse criteria i.e., (i) providing technical details of the architecture
and implementation, (ii) clearly defining their limitations for further deployments, (iii)
drawing new lessons learnt from a more advanced, systemized and inUse prototype, (iv)
describing the current interface of the system (Fig.10), (v) reporting new experimental
results (Fig.11, Fig.12) against traditional data mining techniques [5]. This work com-
plements [10], which explains traffic congestion in quasi-real-time. In both works data
is lifted at semantic level but the diagnosis and predictive approaches are different tech-
niques. Diagnosis is based on semantic matching of events and a probabilistic model
while prediction is based on stream auto-correlation, association mining.

This paper is organized as follows: Section 2 presents the Dublin city context and
highlights the main challenges we faced to predict the severity of its road traffic conges-
tion. Section 3 describes the system architecture while detailing its limitations. Section
4 reports some experimental results regarding its scalability and accuracy. Section 5
draws some conclusions and talks about future directions.

2 Context: Transportation in Dublin City
2.1 Open Data Sources
All data sources in Table 1 are classified with respect to their velocity i.e., static, quasi
stream, stream. They report various types of information coming from static or dy-
namic sensors, exposed as open, public data and described along heterogenous formats.
Quasi stream refers to low throughput sensors. Static sensing refers to stationary plat-
form while dynamic sensing refers to moving objects. The journey times data stream is
used for (i) monitoring road traffic flow (i.e., free, moderate, heavy, stopped) between
static sensors, and (ii) deriving congestion and its severity (i.e., spatial and temporal
representation of traffic queues) across 47 routes and its 732 points in Dublin city, all
in real-time. Predicting the characteristics of this stream, which we called main stream

1 Prediction part of the live IBM STAR-CITY system (http://dublinked.ie/sandbox/star-city/).



(i.e., stream to be predicted), consists in interpreting, contextualizing and correlating
its content with these six exogenous data sources: (1) road weather condition which
captures specific features of roads conditions e.g., road temperature along 11 static sta-
tions, (2) weather information e.g., general condition, temperature, precipitation along
19 static stations, (3) Dublin bus stream which senses location, speed, delay of 1000
buses every 20 seconds, (4) social media feeds which relate traffic-related information
e.g., accident, delays, last minute road closure from reputable sources, (5) road works
and maintenance which plan roads disruptions, their type, duration and (potential) im-
pact on traffic, all updated on a weekly basis, (6) city events which characterize social
events of various type e.g., music, sport, politics, family, with an average of 187 events
per day, all updated on a daily basis.

These data sets have been selected based on their (i) openness, (ii) positive spatial
correlation with the journey times data stream (i.e., data within a boundary box: max /
min latitude: 53.418536 / 53.274247; max / min longitude: -6.095459 / -6.394258), and
(iii) factual (positive or negative) impact on traffic flow conditions [8]. Fig.1 spatially
represents the static sensors: journey times, road condition, weather stations. The ESRI
SHAPE file of Dublin city, spatially describing map-related elements, is used for (i)
capturing the shape of roads, and more importantly (ii) identifying nearby roads and
their spatial-based segment representation.

Type Sens- Data Description Format Temporal Size per Data Provider
ing Source Frequency (s) day (GBytes) (all open data)

Journey times Dublin Traffic Dublin City
across Dublin Department’s CSV 60 0.1 Council via

City (47 routes) TRIPS systema dublinked.ieb

Road Weather CSV 600 0.1Condition (11 stations) NRAc

Real-time Weather Information [5, 600] [0.050, 1.5]St
at

ic

(19 stations) CSV (depending (depending Wundergroundd

on stations) on stations)

St
re

am
D

at
a

Vehicle activity SIRI:Dublin Bus (GPS location, XML- 20 4-6
Dublin City

Stream line number, basede
Council via

delay, stop flag ) dublinked.ief

Social- Reputable sources 0.001
Media of road traffic (approx. LiveDriveg

D
yn

am
ic

Related conditions in Tweets 600 150 tweets Aaroadwatchg

Feeds Dublin City per day) GardaTrafficg

Road Works PDF Updated 0.001 Dublin
and Maintenance once a week City Councilh

Q
ua

si
St

re
am

Events Planned events with Updated 0.001 Eventbritei

D
yn

am
ic

in small attendance XML once
Dublin City Planned events with a day 0.05 Eventfulilarge attendance

Dublin City Map (listing of ESRI Open

St
at

ic

St
at

ic

type, junctions, GPS coordinate) SHAPE No 0.1 StreetMapj

a Travel-time Reporting Integrated Performance System - http://www.advantechdesign.com.au/trips
b http://dublinked.ie/datastore/datasets/dataset-215.php
c NRA - National Roads Authority - http://www.nratraffic.ie/weather
d http://www.wunderground.com/weather/api/
e Service Interface for Real Time Information - http://siri.org.uk
f http://dublinked.com/datastore/datasets/dataset-289.php
g https://twitter.com/LiveDrive - https://twitter.com/aaroadwatch - https://twitter.com/GardaTraffic
h http://www.dublincity.ie/RoadsandTraffic/ScheduledDisruptions/Documents/TrafficNews.pdf
i https://www.eventbrite.com/api - http://api.eventful.com
j http://download.geofabrik.de/europe/ireland-and-northern-ireland.html

Table 1. (Raw) Data Sources for Dublin City Traffic Prediction Scenario.
2.2 Semantic Predictive Reasoning: Research and In Use Challenges

Semantic predictive reasoning [9] is the inference task of interpreting and mining all
relevant exogenous streams and their evolution through their temporal changes and
correlation. Applied and interpreted in our transportation context, predicting severity



of road traffic congestion consists of three high level challenges:

(C1) Handling data variety (csv, xml, tweets, pdf) and velocity (static, stream):
Once exogenous heterogenous data streams are identified as relevant sources for pre-
diction [8], how to represent them in a unified and common model? Which level of
expressivity is required? How to automatically extract knowledge from any unstruc-
tured data sources, especially streams and social media feeds? How to capture temporal
evolution of streams and its underlying knowledge? How to discretize numerical val-
ues from streams? For example, how traffic-related social media feeds can be classified
around key concepts such as incident, truck accident, car delay, and then spatially and
temporally linked with discretized road weather condition, all in real-time?

Weather Information station Journey Times station Road Weather Condition station 

Fig. 1. Spatial Visualization of Static Dublin City Traffic-related Sensors (color print).

(C2) Reasoning on the evolution of multiple data streams:
How to understand knowledge evolution and changes of multiple streams on a time ba-
sis? How to detect spatial, temporal, semantic correlation in a stream? How to identify
associations of streams? E.g., how weather condition is evolving? What were the past
time slots with similar conditions? How an incident-weather context can be evaluated
against historical and real-time traffic flow? Is there any road where a truck accident
and an inclement weather condition could be associated to derive a heavy traffic flow?

(C3) Scalable and consistent prediction:
How to rank and select relevant associations of streams in a scalable way? How to
use them for achieving consistent prediction? E.g., are there many roads where truck
accident and inclement weather condition are associated with a heavy traffic flow? Is
there more evidence of the latter association when a car accident occurred? Will the
prediction be consistent with the traffic flow of connected roads?
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Fig. 2. Articulation of Challenges Ci,1≤i≤3 in Traffic-related Predictive Reasoning (color print).



On the one hand (C1), intensively investigated by the semantic Web [11, 12] com-
munity to represent and interpret data, can be addressed by mature technologies but
still requires some technical adaptations, specially in our streams-based context. On the
other hand (C2) and (C3) are more recent research challenges which are critical for
associating and predicting [9] streams of semantic data. Fig.2 articulates and illustrates
these challenges in a simple context of ”predicting the journey times On

m stream, given
the exogenous weather information stream Pn

m, where both are evolving on a time basis
i.e., from time m to n”. On

m(i) is called a snapshot of stream On
m at time i ∈ [m,n].

This illustration captures (i) records along one weather station (or stream), (ii) travel
condition between two sensors on Dame Street at times i, j. We will consider journey
times as the main stream to be predicted, while the remaining streams from Table 1
are exogenous streams, all used for contextualization (C1), correlation (C2) and pre-
diction (C3). This work focused on addressing these challenges by applying semantic
Web related technologies in the context of road traffic congestion prediction.

3 System Architecture for Traffic-related Predictive Reasoning

We report the system architecture (Fig.3) and provide (i) details of all components, (ii)
justification of their conceptual and technical specification (if relevant), (iii) limitations
and (iv) scalability i.e., applicability to other domains.
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Fig. 3. High-Level System Architecture for Predictive Reasoning (color print).

3.1 High-Level System Architecture

In addition to the components that address all challenges Ci,1≤i≤3 in Section 2.2 (de-
scribed in details in the remaining sections), the system architecture consists of:
• A spatial interpreter, required for (i) geocoding some data sources e.g., social media
feeds and road works (which only give road identification), (ii) evaluating distance be-
tween spatial data but most importantly (iii) retrieving connected roads in Dublin city.
IBM DB2 Spatial Extender2 is used and configured with Ireland SHAPE filem in Table
1, and DB2SE IRELAND GEOCODER geocoder. One of its main strength is its spatial
grid index which ensures good query performance i.e., on average 325 ms per request.
• A stream processing engine, required for processing data streams e.g., serving real-
time semantic streams, materializing knowledge over multiple semantic streams in real-
time. IBM InfoSphere Streams3 is coupled with the semantic enrichment and reasoner.

2 http://www-03.ibm.com/software/products/us/en/db2spaext/
3 http://www-01.ibm.com/software/data/infosphere/streams/



• A reasoner, required for interpreting semantic streams e.g., checking consistency of
one or multiple stream(s) at a specific point of time, evaluating subsumption and sat-
isfiability, identifying ABox entailments (i.e., assignment of data instances to concept
description based on their representation). CEL DL (Description Logic) reasoner4 [13]
is used as it provides core inference tasks over DL EL++ representations (see justifica-
tion of this DL family in Section 3.2), implementing a polynomial-time algorithm.
•A triple store, for storing the semantic representation of raw data and easily retrieving
historical triples. The current prototype uses Jena TDB5 as RDF store. We preferred the
B+ Trees indexing structures which scale better in our context of many (stream) updates.

3.2 Handling Data Variety and Velocity (C1)

Relevance: On the one hand all of our data is exposed through different formats, which
limits not only their integration and semantic interpretation but also any kind of basic in-
ference across data sources. How to measure the similarity of events or road condition?
How to classify impact of weather condition on road traffic flow? These are examples
of inference problems that need answers for predicting knowledge. By deriving similar-
ity, correlation, association rules we aim at deriving knowledge facts that can be used
at prediction time. Such problem cannot be achieved without a minimum of seman-
tic representation. On the other hand data is exposed through (human or device-based)
sensors, it is then crucial that real-time semantic conversion can be supported.

Conceptual and Technical Specification: The model we consider to represent static
background knowledge and semantics of data stream is provided by an ontology, en-
coded in OWL 2 EL6. The selection of the W3C standard OWL 2 EL profile has been
guided by (i) the expressivity which was required to model semantics of data in Table 1,
(ii) the scalability of the underlying basic reasoning mechanisms we needed e.g., sub-
sumption in OWL 2 EL is in PTIME [13]. The DL EL++ [14] is the logic underpinning
OWL 2 EL and the basis of many more expressive DL. For the sake of readability we il-
lustrate semantic representations using the DL formalism. Fig.4 illustrates a DL sample
of the static background knowledge for modeling journey times data.

Road u ∃hasTravelT imeStatus.HeavyTrafficF low v CongestedRoad (1)
Road u ∃hasTravelT imeStatus.StoppedTrafficF low v CongestedRoad (2)
Road u ∃hasTravelT imeStatus.LightTrafficF low v FreeRoad (3)
CongestedRoad u FreeRoad v ⊥ % Incompatibility (4)
{r1} v Road % Individual Definition of a road r1 (5)

Fig. 4. (Sample) Static Background Knowledge T for Journey Times Data Stream.

We represent knowledge evolution by dynamic and evolutive versions of ontologies i.e.,
ontology stream [15]. We considered an ontology stream as a sequence of ontologies
where each ontology captures a snapshot of a stream at a given point of time t. Fig.5 il-
lustrates a stream snapshotOn

m(t1) i.e., the travel flow severity of a road r1 from sensor
TRIPS-DCC-44 to TRIPS-DCC-351, updated every 1 minute through the journey times
data stream On

m at date and time t1 : 2013-04-22T23:01:00. The ontological represen-
tation is important to (i) capture the temporal evolution of its knowledge, (ii) reason
across data streams, while the (basic) temporal representation is used to aggregate mul-
tiple data sources on a time basis.

4 http://lat.inf.tu-dresden.de/systems/cel
5 http://jena.apache.org/documentation/tdb/index.html
6 http://www.w3.org/TR/owl2-profiles/



On
m(t1) : TravelT imeReport u (6)

∃createdAt.(TemporalEntityu (∃inXSDDateT ime.{2013-04-22T23:01:00})) u (7)
∃reportsForT imeInterval.(∃hasDurationDescription.(∃minutes.{1})) u (8)
∃hasSourceFrom.{TRIPS-DCC-44} u ∃hasSourceTo.{TRIPS-DCC-351} u (9)
∃reportsObservation.({r1} u ∃hasTravelT imeStatus.HeavyTrafficF low) (10)

Fig. 5. (Sample) Journey Times Ontology Stream On
m at time 2013-04-22T23:01:00.

Description: Fig.6 describes the architecture for generating OWL EL ontology streams
from raw CSV, tweets, XML, PDF data, all accessed through different mechanisms.
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All the ontology streams have the same static background knowledge to capture time
(W3C Time Ontology7 are used for representing (7), (8)), space (W3C Geo Ontology8

for encoding location of (9)) but differ only in some domain-related vocabularies e.g.,
traffic flow type, weather phenomenon, event type. These ontologies have been mainly
used for enriching raw data, facilitating its integration, comparison, and matching. The
DBpedia vocabulary has been used for cross-referencing entities (not described here).
We did not make use of the Semantic Sensor Network ontology 9 as it is mainly de-
signed for reasoning over sensor-related descriptions rather than its data and associated
phenomenons. In all cases [a,b,c,d], we serve real-time ontology streams by using IBM
InfoSphere Streams, where different mapping techniques15 are used depending on the
data format. The main benefits of packaging our approach using stream processing are:
(i) easy synchronization of streams (with different frequency updates) and their OWL2
EL transformation, (ii) flexible and scalable composition of stream operations (e.g.,
transformation, aggregation, filtering) by adjusting its processing units, (iii) identifi-
cation of patterns and rules over different time windows (Section 3.4), (iv) possible
extension to higher throughput sensors. All points are all natively supported by stream
processing engines. The following refers to the four types of raw data we consider:

7 http://www.w3.org/TR/owl-time/
8 http://www.w3.org/2003/01/geo/
9 http://www.w3.org/2005/Incubator/ssn/



(a) CSV: A large portion of CSV raw data, exposed by our city sensors, refers to con-
tinuous values (e.g., journey times). A first step of discretization was required e.g., Free,
Moderate, Heavy, Stopped traffic flow to conceptualize journey times. To this end we
evaluated historical data over a period of 6 months to estimate the relevant intervals of
values and then associate its concepts. We also adapt existing domain ontologies (e.g.,
SWEET10 for (road) weather phenomenon, SIRI-BUS [10] for bus data) and design new
vocabularies (e.g., journey times) to cover unsupported descriptions (e.g., travelTimeS-
tatus from/to sensors). Each CSV row is interpreted by a mapping process, handled by
our stream processing engine. Fig.7 illustrates the mapping file used for enriching a raw
journey times data record [Route: 6, Link: 5, STT: 32, TCS1:44, TCS2: 351] (collected
at timestamp: 1366671660, updated every minute) in its semantic representation (Fig.5)
using the static background knowledge. We encoded static city sensors (e.g., TCS1: 44)
as OWL individual (e.g., TRIPS-DCC-44) to reduce the size of the stream description.

@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix ttr: <http://www.ibm.com/SCTC/ontology/TravelTimeOntology#> .

_:{$uuid}_0 rdf#type ttr#TravelTimeReport . # $uuid: URI for new travel time report
_:{$uuid}_0 owl#intersectionOf _:{$uuid}_1 . # Each report: intersection of concepts (Fig.5)
_:{$uuid}_1 rdf#first _:{$uuid}_2 . # Join to the first existential restriction in (9)
_:{$uuid}_2 rdf#type owl#Restriction . # Existential restriction in (9)
_:{$uuid}_2 owl#onProperty ttr#hasSourceFrom # hasSourceFrom property in (9)
_:{$uuid}_2 owl#hasValue ttr#{$sourceFom} . # Capture of $sourceFom variable in CSV
_:{$uuid}_1 rdf#rest _:{$uuid}_3 . # Right part of the Intersection in (9)
_:{$uuid}_3 rdf#first _:{$uuid}_4 . # Join to the second existential restriction in (9)
_:{$uuid}_4 rdf#type owl#Restriction . # Another existential restriction in (9)
_:{$uuid}_4 owl#onProperty ttr#hasSourceTo # hasSourceTo property in (9)
_:{$uuid}_4 owl#hasValue ttr#{$sourceTo} . # Capture of $sourceTo variable in CSV
_:{$uuid}_3 rdf#rest _:{$uuid}_5 . # Remaining parts of the Intersection for (7-10)

Fig. 7. (Sample) CSV-2-OWL2EL Mapping File for Enriching a Journey Times CSV Row.

(b) XML: XML based city events are converted in RDF through an XSL Transfor-
mation11. Besides updating their representations, it also upgrades their descriptions fol-
lowing [10]. Existing vocabularies such as DBpedia have been used for (i) annotating
predefined types of events e.g., capacity, category and (ii) handling basic comparison
of events through generalization/specialization. All events are updated only on a daily
basis but persist or repeat over time. We simulate these temporal persistence and repe-
tition in the ontology stream by defining their time interval through the ProperInterval
concept in the W3C Time ontology (by adapting (8)).

(c) PDF: The extraction of the PDF-based road works together with their location,
time interval, description and traffic impact is achieved through state-of-the-art tools
i.e., (i) PDFBox12 for extracting text from PDF, (ii) DB2 Spatial extender for geocod-
ing and (iii) LanguageWare13 for entity extraction through semantic understanding of
content. External vocabulary such as DBPedia has been used for type-ing events e.g.,
road works (e.g., http://dbpedia.org/resource/Roadworks), which ensures potential re-
use in the LOD context. The temporal persistence is achieved similarly as city events.

10 Semantic Web for Earth, Environmental Terminology - http://sweet.jpl.nasa.gov/
11 http://www.w3.org/TR/xslt
12 http://pdfbox.apache.org/
13 http://www-01.ibm.com/software/globalization/languageware/



(d) Tweets: Contrary to city events and road works, the semantic enrichment of social
media feeds needs a more advanced learning phase. We identify the missing semantics
by using an unsupervised learning technique, called Typifier [16], which consists of two
major steps, namely feature extraction and clustering. As a first step, it represents each
element (e.g. tweet, event, delay etc.) in the data by a set of features obtained from the
attributes i.e., text. E.g., the words such as slow, collision, and delay in the social media
feeds can be important features to distinguish its type of delay. Once those features are
extracted, as a second step, it employs a hierarchical clustering algorithm which aims
to maximize intra-cluster homogeneity and inter-cluster separation such that the ele-
ments in the same cluster represent the entities of the same type. The clustering method
is done automatically. Finally, those clusters are mapped to particular concepts in the
background knowledge (DBpedia concepts e.g., Delay, Incident, Accident, Breakdown,
Event) in order to enable the semantic lifting of tweets.

Scalability: Our approach can be applicable to any city, and generalized with any other
(i) semantic representation e.g., OWL 2 DL, (ii) open (e.g., JSON) or proprietary data
format, and (iii) application domains (not only city data) as far as data streams are re-
quired (e.g., through sensors). The ontology stream conceptualization also gives the
advantage to support real-time querying [17] and reasoning [15] e.g., ”retrieving all
roads in Dublin 15 with a heavy traffic flow impacted by inclement weather condition”.

Limitations: The generalization to other domains/cities may require extra manual
work to identify, define or extend ontologies. New description of mapping files (e.g.,
a la CSV-2-OWL2EL or XSLT) would be then required. The entity extraction from
natural language (i.e., PDF and tweets) requires some training phases, hence the re-
quirement of some historical data and their pre-processing phases.

3.3 Reasoning on the evolution of multiple data streams (C2)

Relevance: Once all data in Table 1 is semantically exposed, advanced reasoning tech-
niques are required to capture (i) changes between ontology stream snapshots, and (ii)
associations of knowledge at cross-stream level, all on a time basis. The detection of
changes supports the understanding of stream evolution, and then provides the basics
to compute knowledge auto-correlation along a stream over time. Auto-correlation and
association are core reasoning for evaluating potential patterns at one or multi-stream
level(s), which are required for predicting severity of congestion. Auto-correlation eval-
uates semantic similarity of stream snapshots while association aims at deriving rules
across streams. E.g., identifying that ”the traffic flow is never stopped on week nights
in Dublin 15” or ”a concert event is always associated with a heavy traffic flow” are
useful facts for prediction purposes.

Conceptual and Technical Specification: On the one hand the TBox (i.e., terminolog-
ical box containing concepts and their relations) of our static background knowledge,
which does not change over time, is classified once using EL++ completion rules [14].
On the other hand the ABox axioms (i.e., relations between individuals and concepts),
which are generated by the ontology stream conversion (Fig.6), are internalized into
TBox axioms so (i) completion rules can be applied on both axioms, (ii) TBox reason-
ing (e.g., subsumption, satifiablility) can be performed on internalized ABox axioms.



Axiom (11) illustrates some dynamic knowledge at time t1, as an ABox entailment,
derived from axioms (1), (5) in T (Fig.4) and (10) (Fig.5) using completion rules.

T ∪ On
m(t1) |=using axioms (1),(5),(10)

using completion rules in [14] {r1} v CongestedRoad (11)

Cross stream association is modeled through DL EL++ rules [18], which extends the
DL EL++ expressivity while preserving its polynomial complexity. Intuitively, DL
rules are encoded using SWRL rules14, which is largely based on RuleML. One could,
for example, formulate the timeless rule (12) ”the traffic flow of road r1 is heavy if r1
is adjacent to a road r2 where an accident occurs and the humidity is optimum”. This
rule connects the journey times, social media and weather information streams.

HeavyTrafficF low(s)←Road(r1) ∧Road(r2) ∧ isAdjacentTo(r1, r2) ∧
hasTravelT imeStatus(r1, s) ∧ hasWeatherPhenomenon(r1, w) ∧
OptimunHumidity(w) ∧ hasTrafficPhenomenon(r2, a) ∧
RoadTrafficAccident(a) (12)

Description: The auto-correlation of snapshots along an ontology stream is illustrated
by (C2) in Fig.2 and systematized in Fig.8a. We established it by comparing the num-
ber of changes i.e., new, obsolete, invariant ABox entailments between snapshots. The
number of invariants has a strong and positive influence on auto-correlation. On the con-
trary, the number of new and obsolete ABox entailments, capturing some differentia-
tors in knowledge evolution, has a negative impact and favors negative auto-correlation.
Inconsistencies e.g., (4) are mainly used for capturing incompatible road status at dif-
ferent times e.g., i and j. If captured, they are used to negatively weight the correlation
of snapshotsOn

m(i),On
m(j). i is not an appropriate time to compute the prediction in j.
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Fig. 8. Stream Auto-Correlation and Association Rules for Prediction.

The generation of association rules (Fig.8b) between streams (and their snapshots) such
as (12) is based on a DL extension of Apriori [19], aiming at supporting subsumption
for determining association rules. Contrary to the initial version of Apriori, the asso-
ciation is achieved between any ABox elements together with their entailments (e.g.,
all congested roads, weather, works, incidents, city events delayed buses). The asso-
ciation is possible only in the case their elements appear in at least one point of time
of the streams. As the number of rules grows exponentially with the number of ABox
elements and entailments in streams, we do not mine all potential rules, but filter them
by adapting the definition of support (i.e., number of occurrences that support the ele-
ments of the rule) and confidence (i.e., probability of finding the consequent of the rule

14 http://www.w3.org/Submission/SWRL/



in the streams given the antecedents of the rule) [19] for ontology stream. In addition
only consistent associations are considered. For instance HeavyTrafficF low(s) ∧
LightTrafficF low(s), which is not consistent with respect to (1), (3), (4), aims at
limiting the number of rules to be generated.

Scalability: The approach, systematized from [9] (algorithmic details provided), is
generic enough to reason, auto-correlate and cross-associate any ontology streams.
Even in the presence of support, confidence and consistency filters, the number of po-
tential rules grows very quickly with the (i) the number of exogenous streams, and (ii)
the size of their snapshot. Further investigations along with other metrics are required
to reduce this number, that would ensure a better scalability.

Limitations: Jena TDB failed to correctly handle simultaneous updates (coming from
various streams). Thus the ontology stream needs to be slightly desynchronized from
each other to ensure that Jena TDB handles correctly its transaction model. To this end
we simply delayed some of the streams to obtain a sequence of updates instead. We
ensure such a desynchronization through our stream processing platform. The B+Trees
indexing structure of TDB scales the best in our stream context where large amounts of
updates are performed i.e., the transaction model is much better handled in this struc-
ture. However there were some scalability issues to handle historical data over more
than approximately 110 days. If we do not limit in space and time, and if we do not
apply some heuristics (e.g., by restricting to a few days of historic) we could end-up
dealing with 1, 900, 000+ events (in a - not worst case - context of 458 days of data,
where data is updated every 40 seconds). If we consider bus status that is multiplied by
1, 000 i.e., the number of buses. Some challenges such as data / knowledge summariza-
tion, stream synchronization are important challenges that need to be tackled, as they
both limit the scalability of the approach to some extent.

3.4 Scalable and consistent prediction (C3)

Relevance: Even if the association rules are filtered by significance (support, confi-
dence) for scalability purpose in Section 3.3, they do not all ensure consistent prediction
i.e., prediction which does not contradict other future knowledge facts. Indeed, some
rules are specific and may deliver inconsistent prediction. For instance elaborating a
prediction with a rule that requires inclement weather condition will not be necessarily
consistent in a context where the weather condition is mild. Towards this issue, rules can
be selected based on their applicability in auto-correlated past snapshots, hence reduc-
ing the number of rules and ensuring the consistency of their prediction. This motivates
why combining auto-correlation and cross-stream association is important.

Description: Fig.9 presents how auto-correlation is combined with association rule
generation for deriving the most relevant rules among streams.

We first identify the context (e.g., mild weather, road closure) where the predic-
tion is required, and then perform its auto-correlation with historical contexts. Then,
we identify and select rules based on their support, confidence and consistency, but
only if the consequent of the rule is consistent with the knowledge captured by the ex-
ogenous stream. The significance of rules is contextualized and evaluated against only
auto-correlated stream snapshots. Thus, the selection of rules [9] is driven by auto-
correlation, making the selection knowledge evolution-aware. This ensures to learn
rules that could be applied in similar contexts i.e., where knowledge does not drasti-
cally change. The prediction can be requested globally to all links of all of the 47 roads
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Fig. 9. Scalable and Consistent Prediction.

(red points in Fig.1). Fig.10 reports a 180-minutes ahead prediction of the severity of
traffic congestion in Dublin city. The bottom part reports the proportion of free (green),
stopped (brown) flow roads of the selected area (top part).

Fig. 10. Traffic Congestion Severity Prediction User Interface (color print).
Scalability and Limitations (cf detailed experimentation in Section 4): Interchang-
ing SWRL rules with SPARQL would benefit the scalability of the approach only when
prediction is requested simultaneously. However it would also reduce the expressivity,
the number of interesting association rules and the accuracy of prediction.

4 Experimental Results
We focus on the scalability of our approach and its accuracy by (i) comparing its results
with a (non semantics) state-of-the-art approach [5] in stream prediction, (ii) analyzing
how our approach reacts to the number of stream sources, (iii) reporting the computation
time of the various components in Fig.3. Requested by traffic controllers, scalability
and accuracy of the system have been extensively tested. The experiments have been
conducted on a server of 6 Intel(R) Xeon(R) X5650, 3.46GHz cores, and 6GB RAM.
4.1 Context
Live stream data (Table 1), transformed in OWL/RDF (Table 2) using a static back-
ground knowledge (Table 3), are used for experimentation.The objective is to predict the severity of congestion (i.e., journey times stream data)
on some Dublin roads in the next hour using exogenous streams. We fixed the size of
the stream window to 60 days, which is used for detecting auto-correlation and learn-
ing association rules. The impact of the window on predictive reasoning is reported in
[9]. Adding more days will slightly increase the accuracy but strongly decrease scala-
bility (because of auto-correlation and rules association generation). The evaluation is
achieved on a different streams combinations i.e., [a], [a,b], [a,b,c], [a,b,c,d], [a,b,c,d,e],
[a,b,c,d,e,f], [a,b,c,d,e,f,g] in Table 2, to evaluate their impacts on scalability, accuracy.

4.2 Scalability Experimentation and Results

Fig.11 reports the scalability of our approach, noted [L14] and compares its compu-
tation time with a state-of-the-art approach [5] in stream prediction. Contrary to our



Data Stream Frequency of Raw Update Semantic Update Semantic Conversion
Update (s) Size (KB) Size (KB) #RDF Triples Computation Time (ms)

[a] Journey Times 60 20.2 6, 102 63, 000 0.61
[b] Bus 40 66.8 1, 766 11, 000 0.415
[c] Weather 300 2.2 267 1, 140 0.189
[d] Road Works once a week 146.6 77.9 820 3.988
[e] City Events once a day 240.7 297 612 1.018
[f] Road Weather 600 715.7 181 660 0.068
[g] Incident 600 0.2 1.0 7 0.002

Table 2. Stream Datasets Details in No Particular Order (average figures).

Ontology Size (KB) #Concepts #Object #Data #Individuals Imported Data Sets
Properties Properties Ontologies Covered

NASA SWEET12
158.8 90 40 34 63 W3C [b,c](IBM adaptation) Time,IBM Travel Time 4, 194 41 49 22 1, 429 Geo [a]

IBM SIRI-BUS 41.9 21 17 18 - [d]
W3C Time9 25.2 12 24 17 14 - [a-g]
W3C Geo10 7.8 2 4 - - - [a-g]
DBpedia Only a subset is used for annotation i.e., 28 concepts, 9 data properties [e-g]

Table 3. Static Background Knowledge for Semantic Encoding.
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Fig. 11. Scalability of Prediction Computation.

approach, stream correlation is detected at raw data level using (i) statistics-based data
analysis and (ii) mathematical properties of the signal (here streams).

[5] scales much better than our approach in all configurations. Our approach re-
quires some non-negligible computation time for reasoning on top of the semantics-
enriched stream data. The identification of significant rules is strongly impacted by
the number of potential rules, which grows exponentially with the number of ele-
ments/entailments in streams (secondary vertical axis). Once all rules are identified,
consistent prediction is delivered from 1.5s to 2.7s.

4.3 Accuracy Experimentation and Results

Figure 12 reports the prediction accuracy of both approaches. The accuracy is measured
by comparing predictions (severity of congestion) with real-time situations in Dublin
City, where results can be easily extracted and compared from the raw and semantic
data in respectively [5] and our approach. The more the number of streams the better
the accuracy of prediction for both approaches. However our approach reaches a better
accuracy when text-related streams [d,e,g] are interpreted while the state-of-the-art ap-
proach cannot take any benefit of the semantics of such streams. Overall, our approach
obtains a better accuracy, mainly because all the rules are pruned based on the con-
sistency of their consequent. By enforcing their consistency, we ensure that rules are
selected based on the surrounding context, here exogenous data streams. The semantic



enrichment of data stream is then beneficial for correlating, cross-associating and then
predicting streams on a common basis.
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Fig. 12. Accuracy of Prediction.

4.4 Lessons Learned

Our experimental results emphasize the advantage of using semantic Web technolo-
gies for predicting knowledge in streams i.e., accuracy, but also point out the scala-
bility limitation, especially compared to pure statistical approaches. The more streams
the more rules which positively (resp. negatively) impacts accuracy (resp. scalability).
Since state-of-the-art approaches fail to encode text-based streams in pure value-based
time series, they simply fail to interpret their semantics. On the contrary, our approach
interpret their semantics to enrich the prediction model, ensuring better accuracy.

The reasoning mechanisms in Fig.8 are highly coupled with the polynomial-time
CEL reasoner for determining subsumption and consistency, which fits OWL 2 EL.
Considering more expressive semantics could have triggered stronger rules while reduc-
ing its number, hence improving the scalability (to some extent) and accuracy of pre-
diction. It would also be interesting to evaluate the impact of using a subset of OWL 2
EL on the computation performance and the prediction results. Further experiments are
required to provide the most appropriate context and trade-off complexity/expressivity.

In the real world, sensors exhibit noise i.e., they do not observe the world perfectly.
The causes range from malfunctioning, mis-calibration, to network issues and attrition
breakdown. Noisy data needs to be detected early to avoid a useless semantic enrich-
ment, which could raise to more important problems at reasoning time, reaching to
completely inaccurate prediction (due to alteration of rules support and confidence). We
partially addressed this problem by integrating some custom filter operators at stream
processing level to check validity of data e.g., data range checking, exceptions. The
integration of new data stream needs a careful analysis of historical data in order to
identify the most appropriate filters, avoiding as much noise as possible.

Data streams evolve over time, and release new snapshots at various point of time,
making the data stream integration complex. We considered the W3C Time ontology
to represent the starting date/time and the duration of each snapshot, but other more
complex time feature could have been used e.g., temporal intervals. This would support
more complex reasoning to reason over time intervals. For scalability reasons we use
basic methods to evaluate loose temporal similarity and then integrate data stream at
time level. However research challenges, already tackled by [20], would need to be
considered for more accurate temporal joints.



5 Conclusion and Future Work
This work, focusing on transportation, presents how severity of road traffic congestions
can be predicted. We (i) presented its challenges, (ii) motivated the use of semantic
Web technologies, and (iii) exposed its scalability together with its limitation. We illus-
trated how recent research work in semantic predictive reasoning, using and interpreting
semantics of data, can be exploited, adapted and systematized to ensure accurate and
consistent prediction. Our prototype of semantics-aware prediction, experimented in
Dublin City, works efficiently with real, live and heterogeneous data stream. The exper-
iments have shown accurate and consistent prediction of road traffic conditions, main
benefit of the semantic encoding of information.

As emphasized in Section 4.4, handling (i) noisy data stream, (ii) time reasoning,
(iii) flexible stream integration are future domains of investigation. More end-users re-
lated evaluations are also planned e.g., user interface, interaction scenarios.
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10. Lécué, F., Schumann, A., Sbodio, M.L.: Applying semantic web technologies for diagnosing
road traffic congestions. In: International Semantic Web Conference (2). (2012) 114–130

11. Han, L., Finin, T., Parr, C., Sachs, J., Joshi, A.: Rdf123: from spreadsheets to rdf. In: The
Semantic Web-ISWC 2008. Springer (2008) 451–466

12. Abel, F., Gao, Q., Houben, G.J., Tao, K.: Semantic enrichment of twitter posts for user profile
construction on the social web. In: The Semanic Web: Research and Applications. Springer
(2011) 375–389

13. Baader, F., Lutz, C., Suntisrivaraporn, B.: Cel - a polynomial-time reasoner for life science
ontologies. In: IJCAR. (2006) 287–291

14. Baader, F., Brandt, S., Lutz, C.: Pushing the el envelope. In: IJCAI. (2005) 364–369
15. Ren, Y., Pan, J.Z.: Optimising ontology stream reasoning with truth maintenance system. In:

CIKM. (2011) 831–836
16. Ma, Y., Tran, T., Bicer, V.: Typifier: Inferring the type semantics of structured data. In:

International Conference on Data Engineering (ICDE). (2013) 206–217
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