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Abstract. For effectively searching the Web of data, ranking of results
is a crucial. Top-k processing strategies have been proposed to allow
an efficient processing of such ranked queries. Top-k strategies aim at
computing k top-ranked results without complete result materialization.
However, for many applications result computation time is much more
important than result accuracy and completeness. Thus, there is a strong
need for approximated ranked results. Unfortunately, previous work on
approximate top-k processing is not well-suited for the Web of data.
In this paper, we propose the first approrimate top-k join framework
for Web data and queries. Our approach is very lightweight — necessary
statistics are learned at runtime in a pay-as-you-go manner. We con-
ducted extensive experiments on state-of-art SPARQL benchmarks. Our
results are very promising: we could achieve up to 65% time savings,
while maintaining a high precision/recall.
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1 Introduction

With the proliferation of the Web of data, RDF has become an accepted standard
for publishing data on the Web. RDF data comprises a set of triples {(s, p,0)},
which forms a data graph, cf. Fig. 1-a.

User-/Query-Dependent Ranking. For web-scale data, queries often pro-
duce a large number of results (bindings). Given large result sets, result ranking
becomes a key factor for an effective search. However, ranking functions often
need to incorporate query or user characteristics [1,4,19]:

Ezxample 1. Find movies with highest ratings, featuring an actress “Audrey Hep-
burn”, and playing close to Rome, cf. Fig. 1.

Exp. 1 would require a ranking function to incorporate the movie rating,
quality of keyword matches for “Audrey Hepburn”, and distance of the movie’s
location to Rome. While one may assume that a higher rating value is preferred
by any user and query, scores for keyword and location constraint dependent on
query and user characteristics. For instance, in order to rank a binding for “Au-
drey Hepburn”, a function may measure the edit distance between that keyword
and the binding’s attribute value, Fig. 1-c. Notice, given another keyword (e.g.,
only “Audrey”), the very same attribute value would yield a different score.
Further, depending on the user’s geographic knowledge of Italy, she may have
different notions of “closeness” to Rome, e.g., distance < 100 km, cf. Fig. 1-c.

Join Top-k Processing. Top-k processing aims at computing k top-ranked
bindings without full result materialization [7, 8]. That is, after computing some
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Fig.1: (a) RDF data graph about the movies “Roman Holiday”, “Breakfast at
Tiffany’s”, and “Amélie”. (b) Query graph asking for a movie starring “Audrey
Hepburn”. (¢) Scoring function that aggregates scores for triple pattern bindings
(bold): movie ratings, edit distance w.r.t. “Audrey Hepburn”, and distance of
the movie’s location to Rome (lat: 41.8947, long: 12.4839) < 100 km.

bindings, the algorithm can terminate early, because it knows that no binding
with higher ranking score exists. For efficiently processing ranked queries over
Web data, two recent works employed top-k processing techniques [9, 22].
However, many applications do not require a high result accuracy or com-
pleteness. In fact, result computation time is often the key factor. Thus, there is
a strong need for approzimated ranked results. That is, a system should be able
to trade off result accuracy and completeness for computation time.
Approximate Join Top-k Processing. Unfortunately, existing approach-
es for top-k processing over RDF data compute only exact and complete re-
sults [9,22]. Moreover, previous works for approximate top-k processing over
relational databases [2,3,12,18,20] are not suitable for Web queries/data. This
is because these works assume complete ranking score statistics at offline time:
(P.1) Web Queries. Query-/user-dependent ranking functions are employed
for many important Web queries, e.g., keyword, spatial or temporal queries [1,
4,19]. However, such ranking scores are only known at runtime. Consider tps
and tpz in Fig. 1-b: binding scores are decided by query (i.e., edit distance to
query keyword “Audrey Hepburn”) or user characteristics (i.e., the user-defined
distance to Rome). So, no offline score statistics can be computed for tps or tps.
(P.2) Web Data. Web data is commonly highly distributed and frequently
updated. For instance, movie ratings for pattern tp; (Fig. 1-b) may be spread
across multiple data sources — some of them even “hidden” behind SPARQL end-
points. Moreover, these sources may feature constantly updated rating scores.
Thus, while constructing an offline statistic for rating scores is feasible, it comes
with great costs in terms of maintenance. This problem is exacerbated by the
fact that RDF allows for very heterogeneous data. For example, the rating pred-
icate in tp; could be used to specify the rating of movies as well as products,
restaurants etc. Thus, score statistics may grow quickly and become complex.
Contributions. (1) This is the first work towards approximate top-k join
processing for the Web of data. That is, we propose a lightweight approach,
which addresses problem P.1 and P.2: (P.1) We learn score distributions in a
pay-as-you-go manner at runtime. (P.2) Our score statistics have a constant
space complexity and a computation complexity bounded by the result size.
(2) We conducted experiments on two SPARQL benchmarks: we could achieve
time savings of up to 65%, while still allowing for a high precision/recall.



Outline. We outline preliminaries in Sect. 2 and present the approximate
top-k join in Sect. 3. In Sect. 4, we discuss evaluation results. Last, we give an
overview over related works in Sect. 5 and conclude with Sect. 6.

2 Preliminaries
Data and Query Model. We use RDF as data model:

Definition 1 (RDF Graph). Given a set of edge labels ¢, a RDF graph is a
directed labeled graph G = (V,E,L), where ¥V = Vg W V4 with entity nodes as Vg
and attribute nodes as V4. Edges € = {(s,p,0)} are called triples, with s € Vg
as subject, p € £ as predicate, and 0o € Vg W V4 as object.

An example is depicted in Fig. 1-a. Further, we employ basic graph patterns
(BGPs) as query model:

Definition 2 (BGP Query). A BGP query Q is a directed labeled graph Q =
(VL,E9), with Ve = V‘? & Vg as union of variables Vg and constants Vg, Edges
E2Q are called triple patterns. Triple pattern tp = (s,p,0) with s € V‘% W Vg,
pEeELY V‘% and o € V‘g O] Vg. We write Q as set of its triple patterns: Q = {tp;}.

Ezample 2. In Fig. 1-b, pattern (m, starring, “Audrey Hepburn”) has m as
variable, constant “Audrey Hepburn” as object, and starring as predicate.

Given a query Q, a binding b is a vector (¢1,...,t,) of triples such that: each
triple t; matches exactly one pattern tp; in Q and triples in b form a subgraph of
the data graph, G. We say b binds variables to nodes in the data via the matching
of patterns in Q. Formally, for binding b there is a function puy : V‘? — V that
maps every variable in Q to an entity/attribute node in the data.

Partial bindings (featuring some patterns with no matching triple) oc-
cur during query processing. For a partial binding b, we refer to a pattern
tp; with no matching triple as unevaluated and write * in b’s i-th position:
(t1,. .. tic1, %, tig1, ..., tn). We denote the set of unevaluated patterns for par-
tial binding b as Q“(b) C Q. A binding b comprises a binding ¥, if all triples in
b’ are also contained in b. If b comprises b, we say binding b’ contributes to b.
Ezample 3. Given Fig. 1-b, a partial binding b3y = (x,%,t31 = (my, loc, l3))
in Fig. 2-a matches pattern tps, while Q%(bs1) = {itp1, tp2} are unevaluated.
bs1 binds variable m and | to entity my and ly. Further, the complete binding
b = (t12,t21,t31) comprises partial binding bsy = (*,*,131). bs1 contributes to b.

Ranking Function. To quantify the relevance of a binding b w.r.t. a
query /user, we employ a ranking function: scoreg : BS + R, with B2 as set of
all partial/complete bindings for Q. That is, scoreg(b) is defined as aggregation
over b’s triples: scoreg(b) = P, ¢ ;, scoreg(t), with @ as monotonic aggregation
function. A ranking function for our example is in Fig. 1-c. Note, scoreg could be
defined as part of the query, e.g., by means of the ORDER BY clause in SPARQL.

Sorted Access. For every pattern tp; in query Q, a sorted access sa; re-
trieves matching triples in descending score order. Previous works on join top-k
processing over Web data introduced efficient sorted access implementations for
RDF stores [9,22]. Let us present simple approaches for our example (Fig. 2-a):
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Fig.2: (a) A-PBRJ tree for Fig. 1-b. Two information flows occur in the tree:
partial bindings (green) and score samples (blue). (b) Sufficient statistics based
on scores observed at indexing time (stat;) and runtime (staty and stats).

Ezample 4. Given the keyword pattern tps = (m, starring, “Audrey Hepburn”),
a sorted access must materialize all triples, which have a value that contains
“Audrey” or “Hepburn”. After materialization, these triples are sorted with de-
scending similarity w.r.t. that keyword (e.g., measured via edit distance). On the
other hand, for pattern (m, loc, 1), an R-tree on the attribute pair (lat, long)
may be used. This offline computed index yields two hits: l1 and ly. While ly is
an exact match (thus, triple t3; has max. score 1), 11 is more distant from Rome.
Last, an index for attribute rating can be constructed offline: triples are stored
with descending rating value. Then, sorted access say can iterate over this list.

Partial bindings retrieved from sorted accesses are combined via joins. That
is, an equi-join combines two (or more) inputs. This way, multiple joins form a
tree. For instance, three sorted accesses are combined via two joins in Fig. 2-a.

Problem. Our goal is to compute k high-ranked query bindings that may
differ from the true top-k results in terms of false positives/negatives. These
approximations aim at saving computation time. For this, we use a top-k test:
given a partial binding, we estimate its probability for contributing to the final
top-k results and discard such bindings that have only a small a probability.

We exploit conjugate priors for learning necessary probability distributions.

Bayesian Inference. Let © be a set of parameters. One may model prior
beliefs about these parameters in the form of probabilities: © ~ P(O | a) with
© € O [6]. Here, « is a vector of hyperparameters allowing to parametrize the
prior distribution. Suppose we observe relevant data x = {x1,...,2,} w.r.t. O,
where each x; ~ P(x; | ©). Then, the dependency between observations x and
prior parameters © can be written as P(x | ©). Using the Bayes theorem we
can estimate a posterior probability, which captures parameters © conditioned
on observed events x. In simple terms, a posterior distribution models how likely
parameters © are, in light of the seen data x and the prior beliefs [6]:
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Ezample 5. For pattern tpy in Fig-2-a, scores are based on rating values So,
we can compute sufficient statistics (mean T, = 8.1 and variance s3 = 0.16)
for these scores at offline time, cf. staty in Fig-2-b. Such statistics represent
prior beliefs about the “true” distribution, which is capturing only those scores
for bindings of tpy that are part of a complete binding. Only triple t15 and t13
contribute to complete bindings. Thus, only their scores should be modeled via a
distribution. We update the prior beliefs using scores samples x observed during
query processing, thereby learning the true (posterior) distribution as we go.

As we are interested in unobserved events z*, we need the posterior predictive
distribution, i.e., the distribution of new events given observed data x:

P(z* | x,a) = ZP PO |x,a) (2)

PO |x,a)x P(x|O)-PO|a)=

An important kind of Bayesian prlors are the conjugate priors. Intuitively, con-
jugate priors require the posterior and prior distribution to belong to the same
distribution family. In other words, these priors provide a “computational conve-
nience”, because they give a closed-form of the posterior distribution [6]. Thus,
posterior computation is easy and efficient for conjugate priors.

3 Approximate Top-k Join

We now present an approximate top-k processing for the Web of data. In contrast
to existing works [2, 3,12, 18, 20], we follow a lightweight approach: (1) We learn
all necessary score statistics at runtime, cf. Algo. 2 (P.1, Sect. 1). (2) We show
our score distribution learning to have a constant space complezity and a runtime
complezity bounded by the result size, cf. Thm. 1 (P.2, Sect. 1).

3.1 Approximate Rank Join Framework

We follow [17] and define an approximate Pull/Bound Rank Join (A-PBRJ)
framework that comprises three parts: a pulling strategy PS, a bounding strat-
egy BS, and a probabilistic component PC. PS determines the next join input
to pull from [17]. The bounding strategy BS gives an upper bound, g, for the
maximal possible score of unseen join results [17]. Last, we use PC to estimate
a probability for a partial binding to contribute to the final top-k result.
Approximate Pull/Bound Rank Join. The A-PBRJ is depicted in
Algo. 1. Following [17], on line 4 we check whether output buffer O comprises k
complete bindings and if there are unseen bindings with higher scores (measured
via bound B). If both conditions hold, the A-PBR.J terminates and reports O.
Otherwise, PS selects an input ¢ to pull from (line 5) and produces a new par-
tial binding b from the sorted access on input 4, line 6. After materialization, we
update 3 using bounding strategy BS.
Ezample 6. In Fig. 2-a, join jo decides (via strategy PS) to first pull on saz and
load partial binding ts1. Then, join jo pulls on input iy (join ji), which in turn
pulls on its input iy (sa1) loading binding t11 and afterwards on input ia (saz)
loading ta1. The join attempt t11 X to1 in join j1 fails, because entity ms # my.



Algorithm 1: Approx. Pull/Bound Rank Join (A-PBRJ).

Param.: Pulling strategy PS, bounding strategy BS, probabilistic comp. PC.
Index : Sorted access sa; and sa; for input ¢ and j, respectively.

Buffer : Output buffer O. H; and H; for “seen” bindings from sa; and sa;.
Input : Query Q, result size k, and top-k test threshold 7.

Output: Approximated top-k result.

1 begin
2 B 00, K<+ —0
3 PC.initialize()
4 while | O |< k or miny ¢ o scoreg(V') < 8 do
5 i < PS.input() // choose next input via pulling strategy PS
6 b < next partial binding from sorted access sa;
7 B < BS.update(b) // update [ via bounding strategy BS
// top-k test, cf. Algo. 3
if PC.probabilityTopK (b,x) > T then
9 O+ H; x {b}
10 bUH; // add b to buffer H;
11 if #new bindings b in O > training threshold then
// score distribution learning, cf. Algo. 2
12 PC .train(b)
13 Retain only k£ top-ranked bindings in O
14 if |O| > k then x < miny ¢ o scoreg(b)
// return approximated top-k results
15 return O

In line 8, PC estimates the probability for partial binding b leading to a
complete top-k binding: the top-k test. If b fails this test, it will be pruned. That
is, we do not attempt to join it and do not insert it in H;. H; is a buffer that
holds “seen” bindings from input i. Otherwise, if the top-k test holds, b is further
processed (lines 9 - 14). That is, we join b with seen bindings from the other
input j and add results to O. Further, b is inserted into buffer H;, line 10. For
learning the necessary probability distributions, PC trains on seen bindings/-
scores in O, line 12. Notice, we continuously train PC throughout the query
processing — every time “enough” new bindings are in O, line 11. PC requires
parameter x for its pruning decision. s holds the the smallest currently known
top-k score (line 14). On line 2, & is initialized as —oo.

Choices for BS and PS. Multiple works proposed bounding strategies,
e.g., [56,7,10,17] as well as pulling strategies, e.g., [7,11]. Commonly, the corner
bound [7] is employed as bounding strategy BS:

Definition 3 (Corner Bound). For a join operator, we maintain u; and l;
for each input i. u; is the highest score observed from i, while I; is the lowest
observed score on i. If input i is exhausted, l; is set to —oo. The bound for scores
of unseen join results is B = max{uj ® lo,us S 1 }.

In example Fig. 2-a, join j; currently has 8 = max{8.5 + 0.9,0.9 + 8.5}, with
uy = l; = 8.5 and uy = Iy = 0.9. On the other hand, the corner-bound-adaptive
strategy [7] is frequently used as pulling strategy PS:



Definition 4 (Corner-Bound-Adaptive Pulling). The corner-bound-adap-
tive pulling strategy chooses the input i such that: i =1 iff uy ®lo > us Hl; and
1 = 2 otherwise. In case of a tie, the input with less unseen bindings is chosen.

For instance, in join j; (Fig. 2-a) either input may be selected, because 8.5+0.9 =
0.9 4 8.5 and both inputs have two unseen partial bindings.

3.2 Probabilistic Component PC

Given a partial binding b, we wish to know how likely b will contribute to the final
top-k results. For this, the top-k test exploits two probabilities: (1) The prob-
ability that b contributes to a complete binding (binding probability). (2) The
probability that complete bindings comprising b have higher scores than the
current top-k bindings (score probability).

Binding Probability. To address the former probability, we use a selec-
tivity estimation function sel. Simply put, given a query Q, sel(Q) estimates
the probability that there is at least one binding for Q [14,15]. For example,
selectivity of pattern tps = (m,loc,l) is sel(tps) = 2, because out of the three
movie entities only two have a loc predicate, cf. Fig. 1-a.

Further, we define a complete binding indicator for a partial binding b:

3 X3
1{Q"(b) | b} = {(1) if sel(Q%(b) [ 5) > 0 3)
otherwise

Intuitively, for a partial binding b, 1{Q%(b) | b} models whether matching

triples for b’s remaining unevaluated patterns can ezist, given variable assign-
ments dictated by b. That is, Q“(b) | b is a set of patterns {tp, }, such that pattern
tp; € Q%(b) and each variable v in tp; that is bound by b is replaced with its
assignment in b, pp(v), which results in a new pattern tp,.
Ezample 7. Consider partial binding b1 = (t11 = (ms, rating, 8.5), %, %) in
Fig. 2-a. Q%(b11) | b11 = {(ms, starring, “Audrey Hepburn”), (ms, loc, I)},
because variable m in pattern tps and tps is replaced with its assignment in by,
wp11(m) = mg. 1{Q%(b11) | b11} = 0, as selectivity for both patterns is 0.

Notice, any selectivity estimation implementation may be used for the com-
plete binding indicator. We employed [14, 15] for our experiments.

Score Probability. For a partial binding b, let scores for bindings of b’s
unevaluated patterns, Q*(b), be captured via a random variable X é“(b).
Example 8. In Fig. 2-a, partial binding bsy currently has a score of 1. However,
scores for bindings to tpy and tps are unknown and modeled via Xéu(b31).

Then, we can obtain the probability for b contributing to a complete binding
that has a score > z as:

P (XQ o = o, b)) (4)

where d(x,b) .= x — scoreg(b). Note, partial binding b has a current score,
scoreg(b), and only the score for its unevaluated patterns is unknown. So, §(x, b)
is the “delta” between b’s current score and a desired score x.

Top-k Test. Finally, we use (1) the complete binding indicator to determine
whether b might contribute to any complete binding. Further, (2) the score
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probability to estimate how likely a complete binding comprising b has a score
that is larger than the smallest known top-k score, x (cf. Algo. 1 line 14):

1(Q%(b) [ b) - P(XGu@py = 6(, b)) > 7 ()

M ©))
with 7 € [0, 1] as top-k test threshold.

3.3 Score Distribution Learning

Distributions for random variables X ou (b) Ay be obtained by learning a score
distribution P(X?) for each join input . Note, partial bindings, which come
from the same input, have the same set of unevaluated triple patterns. Thus, X
captures scores of the unevaluated patterns from its partial bindings.

Ezample 9. In Fig. 2-a, all partial bindings from input i1 have Q% = {tpa, tp3}
as unevaluated patterns. Thus, P(XSQ“(bu)) = P(X}), as binding b1y is produced
by input i1. In fact, all bindings from iy follow the same distribution, P(X; ),
which captures scores of tps X tps. Overall, we learn four distributions, cf. Fig. 3.

We do not know the true distribution for X7. In such a case, a common
assumption is to use a Gaussian distribution for X/, cf. Eq. 6a. We employ a
conjugate prior to train its unknown mean and variance, respectively.

As shown in [6], the mean of X} follows a Gaussian distribution (Eq. 6b) and
the variance of X? follows an inverse-Gamma distribution (Eq. 6¢). Hyperpa-
rameters ag = (uo, Mo, 78, Vo) parameterize both distributions, where y is prior
mean with quality 79, and o is prior variance with quality v [6]:

X} ~ normal (y, 0?) (6a)
o2

p | 0 ~ normal (uo, ) (6b)
"o

o? ~ inverse-gamma (0.5 - v, 0.5 - 1907 (6¢)

Prior Distribution. Prior initialization is called on line 3 in Algo. 1. For
each input ¢ we specify a prior distribution for X7 via prior hyperparameters
ag. For agy we require sufficient score statistics in the form of a sample mean,
T =+, cxiand a sample variance s? = ﬁ Do, ex(@i — )%, with x as
sample. There are multiple ways to obtain the necessary score samples:
Ezxample 10. Fig. 2-b depicts three sufficient statistics based on information from

the sorted accesses: (1) Offline information in the case of say. That is, scores



Algorithm 2: PC.train()

Params: Weight w > 1 for score sample x.

Buffer : Buffer A storing hyperparameters a.

Input : Complete bindings B C O and join j.
1 begin

foreach input i in join j do

// load prior hyperparameters for input 3%
3 an:(ﬂnvnmaivl’n) HAZ

// get scores of bindings for input i’s unevaluated patterns
4 foreach complete binding b € B do
5 get binding b comprised in b, which matches unevaluated patterns
6 add scoreg(b') to score sample x

// compute sample mean and variance

T < mean(x) =< Y @

52 ¢« var(x) = ﬁ S(xi — )?

// compute posterior hyperparameters
9 Unt1l & Vn +W, Mntl < Nn +w
10 Hrtt 4= s (papin + 02)

2 1 2 2 n - 2

11 O'n+1<;m'(l/n0'n+(w71)s +;Tﬁ(f*ﬂn)>

// store new (posterior) hyperparameters for input ¢
12 B A+ any1 = (U7l+1:7)n+170'72L+17Vn+1)

are known before runtime, thus, 1 = 8.1 and s? = 0.16 can be computed offline.
(2) Online information for access sas. Recall, the list of matching triples for
keywords “Audrey” and “Hepburn” must be fully materialized. So, To = 0.7 and
s3 = 0.12 may be computed from runtime score samples. (3) Last, given access
saz, we have neither offline scores, nor a fully materialized list of triples (sas
loads a triple solely upon a pull request). In lack of more information, we assume
each score to be equal likely, i.e., a uniform distribution. With min. score as 0
and mazx. score as 1: T3 = 0.5 and s3 = 0.08.

We initialize hyperparameters ap with gy as sample mean, o2 as sample
variance, and 19 = v as sample quality. For every input, we aggregate necessary
sample means/variances for jio/03. For example, given input i; with unevaluated
pattern {tps, tps}, we sum up (aggregate) statistics staty and stats: To + T3 for
po and s% + s3 for o2, cf. Fig. 3. Note, 19 and v are used to quantify the prior
quality. For instance, stat; and stat, are exact statistics, while statg relies on a
uniform distribution. So, weighting reflects the prior’s trustworthiness.

Posterior Distribution. Having estimated a prior distribution, we contin-
uously update the distribution with scores seen during query processing.

Intuitively, each time new complete bindings are produced, all prior distribu-
tions could be trained, cf. Algo. 1 line 11 and Algo. 2. That is, complete binding
scores are used to update hyperparameters from the previous n-th training it-
eration, o, resulting in new posterior hyperparameters, a,,+1. For this, we use
standard training on lines 10-11 (Algo. 2) [6]. In simple terms, the prior mean

fn, is updated with the new sample mean Z, line 10, and the prior variance o2



is updated with the sample variance s2, line 11. Note, each input computes its
“own” score sample x (Algo. 2, lines 5-6).

Prior hyperparameters are weighted via 7,, and v,,. Further, for each hyper-
parameter update, a parameter w is used as weight (indicating the quality of
samples x). Finally, new hyperparameters «,,41 are stored on line 12, Algo. 2.
Ezample 11. Given input i1 and ng = vy = 1 in Fig. 3. Then, its prior is
ap = (1.2,1,0.2,1). We observe scores x = {x1,22} from B = {(t12,t21,131),
(t13,t22,t32)}, with w = |x| = 2, 1 = 1.9 = scoreg(ta1) + scoreg(ts1), and
Ty = 0.9 = scoreg(tae) + scoreg(tss). So, s> = 0.5, & = 1.4, which leads to
posterior hyperparameters: m = v; =1 4+ 2 =23 and

1 1.4—1.2)°
afzg. <0.2+(2—1)-0.5+(3)> =0.71
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After each such update only posterior hyperparameters are stored, thereby
making the learning highly time and space efficient:

Theorem 1 (Score Distribution Learning Time/Space Complexity).
Given an A-PRBJ operator j, at any time during query processing, we require
O(1) of space for score distribution learning. Further, given B complete bindings,
score learning time complexity is bounded by O(|B|).

Proof. A proof can be found in our report [21].

Algorithm 3: PC.probability TopK()

Buffer : Buffer A storing hyperparameters.

Input : Partial bindings b, input 4, and join j.

Output: Probability that b will result in one (or more) final top-k bindings.
1 begin
// load hyperparameters «, for input ¢

2 oy = (/j/n777n70',,2”1/n) — A;
// posterior predictive distribution based on hyperparam. a,
// in closed-form as Student’s t-distribution

s 0'721 n+1
38 | Xi~te, (w | pn, %)

// compute score probability

4 ps «— P (XSQu(b) > §(k,b)) = P (X] > 6(k,b))

// compute binding probability

5 | ps < 1{Q"(b) | b}

// probability that b contributes to top-k results
6 return ps - ps

Predictive Distribution. In Algo. 3, we provide an implementation of the
top-k test. At any point during query processing, one may need to perform this
test, Algo. 1 line 8. Thus, our approach allows to always give a distribution for
X? based on the currently known hyperparameters a,, (Algo. 3, line 2). Since
hyperparameters are continuously trained, the distributions improve over time.



More specifically, we use the posterior predictive distribution. This distri-
bution estimates probabilities for new scores, based on observed scores and the
prior distribution. For a Gaussian conjugate prior, this distribution can be easily
obtained in a closed form as non-standardized Student’s t-distribution with v,
degrees of freedom [6], cf. Algo. 3, line 3. Then, we compute P(X3. ) = P(X7)
by means of the posterior predictive distribution on line 4. Last, we compute the
binding probability via a selectivity estimation function (Eq. 3) on line 5 and
return b’s top-k test probability, cf. line 6.

4 Evaluation

Benchmarks. We used two SPARQL benchmarks: (1) The SP? benchmark
featuring synthetic DBLP data [16]. (2) The DBpedia SPARQL benchmark
(DBPSB), which holds real-world DBpedia data and queries [13]. For both
benchmarks we generated datasets with 10M triples. We translated the SPARQL
benchmark queries to our query model (BGPs). Queries featuring no BGPs were
discarded, i.e., we omitted 12 and 4 queries in DBPSB and SP2. We generated
DBPSB queries as proposed in [13]: Overall, used 8 seed queries with 15 random
bindings, which led to a total of 120 DBPSB queries. For SP? we employed 13
queries. In total, we had a comprehensive load of 133 queries. Query statistics
and a complete query listing is given in [21].

Systems. We randomly generated bushy query plans. For a given query,
all systems rely on the same plan. We implemented three systems that solely
differ in their join operator: (1) A system with join-sort operator, JS, which
does not employ top-k processing, but instead produces all results and then sorts
them. (2) An ezact and complete top-k join operator, PBRJ, featuring the corner-
bound in Def. 3 and the corner-bound-adaptive pulling strategy in Def. 4. PBRJ
is identical to Algo. 1, however, no top-k test is applied. Note, PBRJ resembles
previous approaches for top-k processing over RDF data [9,22]. (3) Last, we
implemented our approzimate operator, A-PBRJ, see Algo 1 in Sect. 3.

Score learning and top-k test implementation for the A-PBRJ operator follows
Algo. 2 and Algo. 3, cf. Sect. 3.3. Further, we used sufficient statistics based on
a uniform distribution over [0, 1], as discussed in Exp. 10 for sorted access sas.
Prior weights vy and 79 are both 1, Algo. 2. Weight w in Algo. 2 is the sample
size, |x|. We reused the selectivity estimation implementation from [14,15] for
our binding probabilities.

Hypothesis (H.1): We expect that JS is outperformed by PBRJ, as it computes
all results for a query. Further, we expect A—-PBRJ to outperform JS and PBRJ.
A-PBRJ’s savings come at the cost of effectiveness.

We implemented all systems in Java 6. Experiments were run on a Linux
server with two Intel Xeon 5140 CPUs at 2.33GHz, 48GB memory (16GB as-
signed to the JVM), and a RAID10 with IBM SAS 148GB 10K rpm disks. Before
each query execution, all operating system caches were cleared. The presented
values are averages collected over five runs.

Ranking Function. We chose triple pattern binding scores, scoreg(t), at
random with distribution d € {u,n,e} (uniform, normal, and exponential dis-
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tribution). We employed a summation as aggregation function, @®. By means of
varying distributions, we aim at an abstraction from a particular ranking func-
tion and examine performance for different “classes” of functions. We employed
standard parameters for all distributions and normalized scores to be in [0, 1].
Hypothesis (H.2): A-PBRJ’s efficiency and effectiveness is not influenced by the
score distribution.

Parameters. We vary the number of results k£ € {1, 5, 10, 20}. Hypothesis
(H.3): We predict efficiency to decrease in parameter k for A-PBRJ and PBRJ.
Further, we used top-k test thresholds 7 € [0,0.8] for inspecting the trade-off
between efficiency and effectiveness.

Metrics. We measure efficiency via: (1) #Inputs processed. (2) Time needed
for result computation. As effectiveness metrics we use: (1) Precision: fraction
of approximated top-k results that are exact top-k results. (2) Recall: fraction
of exact top-k results, which are reported as approximate results. Notice, pre-
cision and recall have identical values, as both share the same denominator k.
We therefore discuss only precision results in the following. Further, precision is
given as average over our query load (so-called macro-precision). (3) Score er-
ror: approximate vs. exact top-k score: ¢ D p=1...k |scoreq (b) — scoreg(b)], with
scorey(b) and scoreg(b) as approximated and exact score for binding b [20].

Efficiency Results. Efficiency results are depicted in Fig. 4-a/e (b/f) for
SP2 (DBPSB). As expected in hypothesis H.1, we observed A-PBRJ to save #in-
puts and computation time. For SP2 (DBPSB), A-PBRJ needed up to 25% (23%)
less inputs vs. baseline PBRJ and 30% (67%) vs. JS. We explain these gains with
pruning of partial bindings via our top-k test, thereby omitting “unnecessary”
joins and join attempts. In fact, we were able to prune up to 40% (90%) of the
inputs, given SP2 (DBPSB). Fewer #inputs translated to time savings of 35%
(65%) vs. PBRJ and 47% (80%) vs. JS, given SP? (DBPSB).

Interestingly, we saw an increase in #inputs for 7 € [0.2,0.4] in SP2 and
T € [0.4,0.8] in DBPSB, cf. Fig. 4-a/e. For instance, comparing 7 = 0.2 and
7 = 0.4 in SP2, A-PBRJ read 8% more inputs. DBPSB was less affected: we
noticed a marginal increase of 2% for 7 = 0.4 vs. 7 = 0.6. We explain the
increase in both benchmarks with a too “aggressive” pruning — too many partial
bindings were pruned wrongfully. That is, many pruned bindings would have led



to a larger or even a complete binding. In turn, this led to more inputs being read,
in order to produce the desired k results. In fact, 7 € [0.6,0.8] was even more
aggressive. However, the ratio between pruned bindings and read inputs was
high enough to compensate for the extra inputs. Overall, we saw a “sweet spot”
at 7 ~ 0.2 for SP? and DBPSB. Here, we noted pruning to be fairly accurate,
i.e., only few partial bindings were wrongfully pruned. In fact, we observed high
precision (recall) values for both benchmarks given 7 ~ 0.2: 88% (95%) in SP2
(DBPSB) — as discussed below. With regard to computation time for SP? and
DBPSB queries, we noticed similar effects as for the #inputs, cf. Fig. 4-b/f. In
particular, the “sweet spot” at 7 ~ 0.2 is also reflected here.

As expressed by hypothesis H.83, we observed #inputs and time to increase
in k for A-PBRJ and PBRJ. For instance, comparing k¥ = 1 and k = 20, A-PBRJ
needed a factor of 1.2 (5.7) more time, given SP2 (DBPSB). Similarly, 1.2 (6.8)
times more inputs were consumed by A-PBRJ for SP? (DBPSB). We explain
this behavior with more inputs/join attempts being required to produce a larger
result. PBRJ leads to a similar performance decrease. For instance given k = 1
vs. k = 20 in SP2, PBRJ needed a factor of 1.3 (1.2) more inputs (time). Note,
as baseline JS simply computed all results, this system was not affected by k.

Furthermore, we can confirm our hypothesis H.2 with regard to system ef-
ficiency: we cloud not find a correlation between system performance and score
distributions. In other words, score distributions (ranking functions) had no im-
pact on A-PBRJ’s performance. For instance given DBPSB queries, A-PBRJ re-
sulted in the following gains vs. PBRJ w.r.t. #inputs (time): 27% (65%) for e
distribution, 23% (64%) given u distribution, and 21% (64%) for n distribution.

Last, with regard to parameter 7, we noted A-PBRJ’s efficiency to increase
with 7 € [0,0.2], given SP? and DBPSB. However, as outlined above, too ag-
gressive pruning let to “inverse” effects. An important observation is, however,
that our approach was already able to achieve performance gains with a very
small 7 < 0.1. Here, partial bindings were pruned primarily due to their low
binding probability. In fact, A-PBRJ could even save time for 7 = 0: 26% (60%)
with SP? (DBPSB). We inspected queries leading to such saving and saw that
many of their partial bindings had a binding probability ~ 0. We argue that this
a strong advantage of A-PBRJ: even for low error thresholds (leading to a minor
effectiveness decrease), we could achieve efficiency gains.

Effectiveness Results. Next, we analyze A-PBRJ in terms of its accuracy.
Baselines PBRJ and JS always compute exact and complete results. So, we restrict
our attention to the A-PBRJ system and different score distributions d € {u,n,e}.

Fig. 4-c/g (d/h) depicts the macro-precision (score error) for varying score
distributions. We observed high precision values of up to 0.98 for both bench-
marks, see Fig. 4-¢/g. More precisely, we saw best results for a small 7 < 0.1 and
the exponential distribution. However, differences are only marginal. That is,
given 7 < 0.1, all distributions led to very similar precision results € [0.8,0.95]
and [0.90,0.98] for SP? and DBPSB, respectively. In other words, A-PBRJ’s ef-
fectiveness is not affected by a particular score distribution. We explain these
good approximations with accurate score/binding probabilities.



Moreover, even for large 7 € [0.6,0.8] A-PBRJ achieved a high macro-precision
in [0.75,0.8] on DBPSB queries. This is because DBPSB queries featured selec-
tive patterns and had only a small result cardinality < 10. Thus, “chances” of
pruning a final top-k binding were quite small — even for a large 7. Moreover,
A-PBRJ let to a very effective pruning via binding probabilities, as many partial
bindings had a binding probability ~ 0 (due to the high query selectivity). This
way, A-PBRJ pruned up to 97% of the total inputs for some DBPSB queries.

In order to quantify “how bad” false positive/negative results are, we em-
ployed the score error metric, see Fig. 4-d/h. For both benchmarks, we observed
that score error was € [0.07,0.11] for a small 7 < 0.1. We explain this with our
high precision (recall). That is, A-PBRJ led to only few false positive/negative
top-k results given 7 < 0.1. As expected, score error increased in 7, due to more
false positives/negatives top-k results. Overall, however, score error results were
very promising: we saw an average score error of 0.03 (0.02), given SP2 (DBPSB).

With regard to parameter k, we observed that £ does not impact A-PBRJ’s
effectiveness. Given SP2, we saw A-PBRJ to be fairly stable in different values for
parameter k. For instance, macro-precision was in [0.8, 0.85] as average over all k
and 7 = 0.1. Also for the DBPSB benchmark, we noted only minor effectiveness
fluctuations: macro-precision varied around 7% with regard to different k.

We noticed A-PBRJ’s effectiveness to not be influenced by varying score dis-
tributions, see Fig. 4-¢/g/d/h. Given SP?, we saw a macro-precision of: 0.79 for
u distribution, 0.79 for e distribution, and 0.80 for n distribution. Also for the
DBPSB benchmark, we observed only minor changes in macro-precision: 0.87
for u distribution, 0.85 for e as well as n distribution.

With regard to the effectiveness of A-PBRJ versus parameter 7, we noticed
that metrics over both benchmarks decreased with increasing 7. For instance,
macro-precision decreased for 7 = 0 versus 7 = 0.8 with 27% (23%), given
SP? (DBPSB). Such a behavior can be expected, since chances of pruning “the
wrong” bindings increase with higher 7 values. Owerall, this confirms H.1: A-
PBRJ trades off effectiveness for efficiency, as dictated by threshold 7.

5 Related Work

There is a large body of work on top-k query processing for relational data-
bases [8]. Most recently, such approaches have been adopted to RDF data and
SPARQL queries [9,22]. These works aim at ezact and complete top-k results.
However, for many applications result accuracy and completeness is not impor-
tant. Instead, result computation time is the key factor.

To foster an efficient result computation, approximate top-k techniques have
been proposed [2,3,12,18,20]. Most notably, [20] used score statistics to pre-
dict the highest possible complete score of a partial binding. Partial results are
discarded, if they are not likely to contribute to a top-k result. Focusing on
distributed top-k queries, [12] employed histograms to predict aggregated score
values over a space of data sources. Anytime measures for top-k processing have
been introduced by [2, 3]. For this, the authors used offline score information, e.g.,
histograms, to predict complete binding scores at runtime. In [18], approximate
top-k processing under budgetary has been addressed.



Unfortunately, all such approximate top-k approaches heavily rely on score
statistics at offline time. That is, scores must be known at indexing time for
computing statistics, e.g., histograms. However, offline statistics lead to major
drawbacks in a Web setting — as outlined in problem (P.1) and (P.2), cf. Sect. 1.
In contrast, we propose a lightweight system: we learn our score distributions
n a pay-as-you-go manner at runtime. In fact, our statistics cause only minor
overhead in terms of space and time, cf. Thm. 1.

6 Conclusion

In this paper, we introduced an approximate join top-k algorithm, A-PBRJ, well-
suited for the Web of data (P.14P.2, Sect. 1). For this, we extended the well-
known PBRJ framework [17] with a novel probabilistic component. This compo-
nent allows to prune partial bindings, which are not likely to contribute to the
final top-k result. We evaluated our A-PBRJ system by means of two SPARQL
benchmarks: we could achieve times savings of up to 65%, while maintaining a
high precision/recall.
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