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Abstract. In this paper we present WaterFowl, a novel approach for
the storage of RDF triples that addresses scalability issues through com-
pression. The architecture of our prototype, largely based on the use
of succinct data structures, enables the representation of triples in a
self-indexed, compact manner without requiring decompression at query
answering time. Moreover, it is adapted to efficiently support RDF and
RDFS entailment regimes thanks to an optimized encoding of ontol-
ogy concepts and properties that does not require a complete inference
materialization or query reformulation. This approach implies to make a
distinction between the terminological and the assertional components of
the knowledge base early in the process of data preparation, i.e., prepro-
cessing the data before storing it in our structures. The paper describes
our system’s architecture and presents some preliminary results obtained
from evaluations on different datasets.
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1 Introduction

The emergence of big data imposes to face important data management issues:
the most predominant ones being scalability, distribution, fault tolerance and
low latency query answering. The current trends in handling large data volumes
focus on parallel processing, e.g., with MapReduce [3] like frameworks. We con-
sider that, for at least cost efficiency reasons, this approach may soon not be
satisfactory anymore and should be combined with local data compression.

Due to the production of an increasing number of voluminous datasets, RDF
(Resource Description Framework) is concerned with this phenomenon. In this
data model, a triple is made up of a subject, a property and an object and is
generally represented as a graph. To foster interoperability among applications
manipulating RDF data, vocabularies such as RDFS (RDF Schema) and OWL
(Web Ontology Language) have been defined in the context of the W3C’s Se-
mantic Web Activity. They support further means to describe the structure and
semantics of RDF graphs and are themselves expressed as RDF triples. When
considered together, RDF data and its vocabulary represent a knowledge base



which presents the main advantage of consistently managing the data and meta-
data within the same data model. In the context of a Semantic Web knowledge
base, handling inferences adds to the list of standard query processing database
management issues, i.e., parsing, optimizing and executing a query.

In this paper, we design a new architecture for immutable RDF database
systems that addresses compression and inference-enabled query answering and
evaluate it using a proof of concept prototype (see Section 5). This framework will
serve as the cornerstone for upcoming features that will include data partition-
ing and supporting data updates and thus becoming mutable. The foundation
of our system consists of a high compression, self-indexed storage structure sup-
porting data retrieving decompression-free operations. By self-indexed, we mean
that one can seek and retrieve any portion of the data without accessing the
original data itself. Succinct Data Structures (henceforth SDS – see Section 2)
provide such properties and are extensively used in our architecture (especially
wavelet trees). The high rate compression obtained from SDS enables the system
to keep a large portion of the data in-memory. Moreover, efficient SDS serializa-
tion/deserialization operations support fast disk-oriented IOs, e.g., data loading.
Based on a preliminary work of Fernández et al. called HDT (Header Dictionary
Triples) [4] – considered as a first attempt in this direction – we propose to push
its inner concept further to its logical conclusion by relying exclusively on bit
maps and wavelet trees at all levels of our architecture (Section 4). Moreover, the
used data structures motivate the design of an original query processing solution
that integrates efficient optimization and RDFS inferences which were not con-
sidered in [4] nor in [9]. The basic idea is to use an encoding of the data that will
capture the subsumption relationships of both concepts and properties. There-
fore, the encoded data will enclose – without extra cost – both raw data and on-
tology hierarchies. Our approach differs from existing ones, such as in [13], since
our encoding, which is prefix-based, will allow us to further restrict the number
of SDS operations needed to answer a query implying inference. To do so, the
system will need to adapt standard rank and select wavelet tree operations into
ones that consider prefix of binary encoded identifiers [7]. This solution will spare
the use of an expensive query rewriting approach or complete inference mate-
rialization (via a forward-chaining approach) when requesting a given ontology
element, i.e., concept or property, and all its sub-elements. In order to com-
plete RDFS entailment regime, we address rdfs:domain and rdfs:range through
a minimalist materialization of subject, respectively object, rdf:type properties.

2 Succinct Data Structures

The family of SDS uses a compression rate close to theoretical optimum, but
simultaneously allows efficient decompression-free query operations on the com-
pressed data. This property is obtained using a small amount of extra bits to
store additional information. Bit vectors (a.k.a. bit maps) are useful to represent
data while minimizing its memory footprint. In its classical shape, a bit vector
allows, in constant time, to access and modify a value of the vector. Munro [10]



designed an asymptotic optimal version where, in constant time, one can (i)
count the number of 1 (or 0) appearing in the first x elements of a bit vector
(denoted rankb(x) with b ∈ {0,1}), (ii) find the position of the xth occurrence
of a bit (denoted selectb(x), b ∈ {0,1}) and (iii) retrieve the bit at position x
(denoted access(x)). In the remainder of this paper, we do not precise the bit b
anymore for these operations and simply write rank and select. Naturally, these
operations on bit vectors would be of great interest for a wider alphabet. The
original solution was provided by Grossi et al. [6] and roughly consists in using
a balanced binary tree – so-called wavelet tree. The alphabet is split into two
equal parts. One attributes a 0 to each character of the first part and a 1 to
the other. The original sequence is written, at the root of the tree, using this
encoding. The process is repeated, in the left subtree, for the subsequence of
the original sequence only using characters of the first part of the alphabet and,
in the right subtree, for the second part. The process iterates until ending up
on singleton alphabet. Roughly, one has provided an encoding of each character
of the alphabet. Using rank and select operations on the bit vectors stored in
the nodes of the tree, one is able to compute rank and select operations on the
original sequence in O(log |alphabet|) by deep traversals of the tree. These op-
erations can be easily adapted to only traverse until a given depth – referred as
rank prefix and select prefix operations (that will be of great interest for us along
with our encoding of ontology concepts and properties). Wavelet trees have been
well studied since then and both space and time efficient implementations are
now available, e.g., the libcds library3 which we have extended with rank and
select prefix operations.

3 Related work

Abadi et al ’s paper [1] reinvigorated the development of novel approaches to
design RDF engines. In particular, performance of query processing started to
get more attention. Solutions such as RDF-3X [11] were designed using multiple
indexes to address this issue but index proliferation also came at the cost of high
memory footprint. Matrix Bit loaded [2] is another multiple indexes solution
which stores compressed data into bit matrices. Comparatively, our approach
proposes a single structure that enables indexed access on all triple elements.

Our approach is inspired by the HDT [4] system which mainly focuses on
data exchange (and thus on data compression). Its former motivation was to
support the exchange of large datasets highly compressed using SDS. Later, [9]
presented HDT FoQ, an extension of the structure of HDT that enables some
simple data retrieving operations. Nevertheless, this last contribution was not
allowing any form of reasoning nor was detailing query processing mechanisms.
In fact, WaterFowl brings the HDT FoQ approach further to its logical con-
clusion by using a pair of wavelet trees in the object layer (HDT FoQ uses an
adjacency list for this layer) and by integrating a complete query processing so-
lution with complete RDFS reasoning (i.e., handling any inference using RDFS

3 https://code.google.com/p/libcds/



expressiveness). This is made possible by an adaptation of both the dictionary
and the triple structures. Note that this adaptation enables to retain the nice
compression properties of HDT FoQ (see Section 5).

Concerning query processing in the presence of inferences, several approaches
have been proposed. Among them, the materialization of all inferences within
the data storage solution is a popular one, which is generally performed using
an off-line forward chaining approach. This avoids query reformulation at run-
time but is associated with an expansion of the memory footprint and difficulties
to handle update operations. To address this last issue, [5] proposes to qualify
each triple with a boolean value that states whether a triple is the result of a
previous inference and a count on the triple appearance in the data set. One
advantage of this approach is to consider updates at both the ABox and TBox
levels but it requires a larger memory footprint. Another approach consists in
performing query rewriting at run-time. It guarantees a light memory footprint
but it is associated with a significant increase of queries generated. Presto [14]
and Requiem [12] are systems adopting this approach with different algorithms.
By adopting a rewriting approach into non recursive datalog, Presto achieves
to perform this operation in non exponential time. The encoding of ontology
elements, i.e., concepts and properties, used in our system is related to a third
approach which consists in encoding elements in a clever way that retains the
subsumption hierarchy. This is the approach presented in [13] and implemented
in the Quest system (a relational database management system). The work of
Rodriguez-Muro et al. [13] relies on integer identifiers modeling the subsumption
relationships which are being used to rewrite SQL queries ranging over identifiers
intervals, i.e., specifying boundaries over indexed fields in the WHERE clause
of a SQL query. In comparison, our work tackles the encoding at the bit level
and focuses on the sharing of common prefixes in the encoding of the identifiers.
The main benefit of this approach compared to [13] is that the queries may be
rewritten in terms of rank prefix and select prefix operations which will not re-
quire a full deep traversal of the wavelet trees (i.e., inducing less operations on
the SDS). Furthermore, it allows high rate compression and does not require ex-
tra specific indexing processes. Finally, our solution focuses on query processing
of SPARQL queries. It aims to minimize the memory footprint required during
query execution and to perform optimizations in terms of SDS operations com-
plexities: access, rank, rank prefix, select and select prefix. Moreover, our query
optimizer also takes into account triple pattern heuristics adapted from [15] as
well as some simple statistics computed when generating the dictionaries.

4 System components

4.1 Dictionary component

In WaterFowl, dictionaries (see Figure 1) are used to: (i) transform the triple
patterns, called Basic Graph Pattern (BGP), of SPARQL queries into their en-
coded version, (ii) transform the encoded result of a query back to their original
verbose values and (iii) support various inference-related operations such as a



Fig. 1. WaterFowl’s architecture

form of query transformation and semantic checking. Our dictionary structures
are responsible for storing some simple data statistics. They are used for query
optimization and are much simpler than histograms found in RDBMS due to
the prohibitive size and time that would be required to respectively store and
compute them. The stored statistics correspond to the total number of subjects,
predicates and objects in the dataset as well as the number of occurrences of
distinct subjects, predicates and objects. These statistics mainly help in dis-
covering the most cost-efficient physical plan of a given query. We will provide
more details in Section 4.3. The dictionary interface supports the communication
between the query processing and the dictionary components.

In the remainder of this section, we focus on the ontology dictionaries, i.e.,
concepts and properties (one for each), which is performed off-line. Details on the
instance dictionary, which is based on common dictionary practices, are omitted
due to space limitation. The ontology encoding is characterized by integer identi-
fiers attributed to each ontology element entry. These integer values are possibly
shared with entries of our other dictionaries, i.e., an integer can identify both
an instance, a property and a concept, without ambiguities since they are con-
textualized. That is, we know that each value appearing in the second position
of a triple or of a SPARQL triple pattern is necessarily a property. Similarly for
concept identifiers, we know that in the dataset their appearances as an object
are associated with an rdf:type property. Since our method to handle SPARQL
BGP is based on navigating through our two-layered structure, we always get
the information required to consider the context. This identifier sharing char-
acteristic among our different dictionaries opens up the encoding of large set of



Fig. 2. Encoding for an extract of LUBM’s ontology hierarchies

identifiers, regardless of the structure of concept and property hierarchies. We
will see that the distribution of identifiers generated for the ontology dictionaries
is qualified by a possibly high sparsity. Hence, enabling an encoding over large
sets of identifiers ensures to support large datasets and ontologies. The overall
objective is to encode the data itself and the ontology hierarchies (that is the
subsumption relations) in a compact way.

Prior to encoding, we are using a Description Logic reasoner, e.g., Pellet4, to
perform the classification of concepts. Note that this approach enables to con-
sider ontologies more expressive than RDFS, e.g., OWL2DL. Then, we navigate
in a breadth-first search manner through this classification. This enables to com-
pute the representation of all concepts such that any pair of concepts sharing a
common ancestor in the concept hierarchy will share a common prefix in their
representation (corresponding to this common ancestor). To do so, starting from
the owl:Thing and an empty prefix, we compute the number of direct subcon-
cepts of owl:Thing. We encode each of these last with a minimum number of bits.
The encoding of each such concept will be a common prefix to the encoding of
any concept belonging to its sub-hierarchy (based on the subsumption relation).
Figure 2(a) represents an extract of the Lehigh University Benchmark (LUBM)
ontology. It emphasizes that owl:Thing’s direct subsumption hierarchy is en-
coded on 2 bits and that any subconcept of Organization (resp. Person, Work)

4 http://clarkparsia.com/pellet/



is encoded with prefix 00 (resp. 01, 10). We will now act in a similar way for
each direct subconcepts of owl:Thing. The only difference being the assumption
that any concept (except owl:Thing) has a direct subconcept named self. This
is needed to differentiate, in query processing, a query targeting a given concept
(referred as self ) or its set of subconcepts. For ease of treatment, we will always
attribute the 0 value to self. Hence the encoding associated to self will corre-
spond to a given concept (as if it was a subconcept of itself) while the identifier
of the concept corresponds to its set of subconcepts. For example, querying any
concept encoded with the prefix 00 will correspond to seeking for any kind of
Organization while querying any concept encoded with the prefix 00 000 will
seek specifically for Organization excluding its subconcepts. Indeed, the prefix
00 000 excludes Department which is encoded by the prefix 00 001 while the
prefix 00 includes all kind of Organization. Recall that we use rank prefix and
select prefix operations which differentiate 00 and 00 000. By recursively pro-
cessing the hierarchy of concepts, one will end up with a prefix encoding (as
illustrated in Figure 2). This self mechanism is not required for owl:Thing since
it is handled natively within our framework. Provided with this encoding one can
easily query any entry regarding a given concept and its subconcepts by the use
of rank prefix and select prefix operations. Considering the properties, we first
distinguish between the rdf:type, datatype and object properties encountered in
the datasets and assign specific prefixes of 2 bits to each of them (resp. 00, 01
and 10). For both the sets of object and datatype properties, we apply a similar
process as for the concepts in order to achieve a prefix encoding. Figure 2(b)
displays the property encodings for an extract of the LUBM’s ontology.

The corresponding encodings are stored in two types of hash tables: (i) one
with an identifier as key and URI as value, denoted H1, and (ii) one with URI
as key and a tuple consisting of (a) an identifier, (b) the number of bits re-
quired to encode the direct sub-elements of this element, (c) some additional
parameters such as number of occurrences, finally (d) range and domain infor-
mation, denoted H2. This additional information are necessary to allow for the
completeness of the RDFS entailment regime and to detect unsatisfiable queries,
e.g., when a SPARQL variable is bound to a concept C that is not instantiated in
the dataset, which may require inferences, i.e., modifying the query such that the
variable ranges over the subconcepts of C. It is also useful for reordering graph
patterns in order to minimize the memory footprint of the executed query. For
example, considering datasets generated from the LUBM, there is no instance for
the Professor concept and LUBM’s query #4 is unsatisfiable. Nevertheless, this
query returns some results if the system seeks for all subconcepts of Professor.

Our approach is adapted to tree-like hierarchies. Nevertheless, we can support
multiple inheritance of ontology entities in several ways. First of all, in order to
capture all the knowledge, one would have to use different prefixes for the same
ontology entity. For example, let us consider a concept A having X and Y as
super-concepts respectively identified by the prefixes 00 and 01. Our solution
relies on providing a single prefix to any concept – even the ones with multiple
super-concepts. Arbitrarily, we decide to assign the prefix corresponding to the



first super-concept encountered in the data. Hence, all occurrences of a concept
in the dataset will share a single common prefix. There will be no expansion
of the dataset. In order to be able to derive all the knowledge induced by the
multiple inheritance, we introduce an equivalence data structure that provides
all encodings for a given concept. Considering our previous example, concept A
appears in the data as 01 10 as well as 00 01. Our solution, will thus use some
query rewriting techniques to retrieve all information induced by the multiple
inheritance. For example, if one wants to retrieve all information regarding any
sub-concept of X, this request should require any concept encoded using the
prefix 00. Queries requiring to access the content of the equivalence structure
contain UNION clauses to address all its (sub-) concepts. Let the encoding of A
be 00 01, in order to retrieve any information of Y or of one of its sub-concepts,
one will ask for the union of any concept with prefix 01 or 00 01 since in the
equivalence data structure, 01 01 is equivalent to 00 01. Even if this approach has
some drawbacks (possibly heavy query rewriting), one only needs to efficiently
know which subsumption relation are not directly expressed in the data and to
store multiple inheritance for the direct common sub-concept only (which clearly
are rare). On the whole, this solution seems more acceptable for our purpose than
heavy materialization.

4.2 Triples storage component

Once the dictionaries have been defined, the triples can be encoded in a structure
that makes intensive use of SDS. To illustrate the structure, we will encode
the following simple RDF triples: {(Uni0, rdf:type, ub:University), (Uni0,

ub:name, "University0"), (Dpt0, rdf:type, ub:Department), (Dpt0, ub:name,

"Department0"), (Dpt0, ub:subOrganizationOf, Uni0), (AP0, rdf:type,

ub:AssociateProfessor), (AP0, ub:name, "Cure"), (AP0, ub:teacherOf, C15),

(AP0, ub:teacherOf, C16), (AP0, ub:worksFor, Dpt0), (C15, rdf:type,

ub:Course), (C15, ub:name, "Course15"), (C16, rdf:type, ub:Course)} .
The triples are first ordered by subjects, predicates and then objects. The

ordered forest of Figure 3(a) will serve to demonstrate the creation of our two-
layered structure where each layer is composed of bitmaps and wavelet trees.

The first layer encodes the relation between the subjects and the predicates;
that is the edges between the root of each tree and its children. The bitmap Bp is
defined as follows. For each root of the trees in Figure 3(a) – that is each subject
– the leftmost child is encoded as a 1, and the others as a 0. On the whole, Bp

contains as many 1’s as subjects in the dataset and is of length equal to the
number of predicates in the dataset. In Figure 3(c), one obtains 101001000101
since there are 5 subjects with the last subject having 1 predicate, the first and
fourth subjects having 2 predicates, the second one having 3 while the third
one has 4. The wavelet tree WTp encodes the sequence of predicates obtained
from a pre-order traversal in the forest (i.e., second row in Figure 3(a)). The
construction of the wavelet tree follows the method described in Section 2.

Unlike the first layer, the second one has two bitmaps and two wavelet trees.
Bo encodes the relation between the predicates and the objects; that is the edges



Fig. 3. Two-layered structure. For ease of presentation, URIs have been shorten. a)
Tree-like representation of some RDF triples. b) Encodings. c) Corresponding storage.

between the leaves and their parents in the tree representation. Whereas, the
bitmap Bc encodes the positions of ontology concepts in the sequence of objects
obtained from a pre-order traversal in the forest (i.e., third row in Figure 3(a)).
The bitmap Bo is defined as Bp considering the forest obtained by removing
the first layer of the tree representation (that is the subjects). In Figure 3(a),
one obtains 1111111101111. The bitmap Bc stores a 1 at each position of an
object which is a concept; a 0 otherwise. This is processed using a predicate
contextualization, i.e., in the dataset whenever a rdf:type appears, we know that
the object corresponds to an ontology concept. In Figure 3(a), considering that
the predicate rdf:type is encoded by 00, one obtains 1010010000101. Finally, the
sequence of objects obtained from a pre-order traversal in the forest (i.e., third
row in Figure 3(a)) is split into two disjoint subsequences; one for the concepts
and one for the rest. Each of these sequences is encoded in a wavelet tree (resp.
WToc and WToi). This architecture reduces sparsity of identifiers and enables
the management of very large datasets and ontologies while allowing time and
space efficiency.



4.3 Query processing component

The query processing component contains the modules displayed on the right
part of Figure 1. It coincides with the classical modules found in standard rela-
tional database management systems. Nevertheless, these modules are adapted
to optimize performances of query answering in the context of an RDF data
model and SDS operations. Due to space limitations, this section details the
aspects related to query processing involving inferences and only provides gen-
eral information on the aspects not requiring any form of reasoning, i.e., we
do not provide a complete presentation of our query optimization strategy. In
the remainder of this section, we will illustrate several aspects in the context of
the LUBM [8] ontology with the following SPARQL query (henceforth denoted
QR1) which seeks for pairs of Professor/Department satisfying the fact that
the Professor works for that Department : SELECT ?x ?y WHERE {?y rdf:type

ub:Department. ?x rdf:type ub:Professor. ?x ub:worksFor ?y.}
A first step consists in parsing the SPARQL query and checking for its well-

formedness. For each valid query, a semantic checking step is performed. It first
involves to communicate with the dictionary component to make sure that each
element of a SPARQL graph pattern is present in the dictionaries. This is per-
formed with both the instance and ontology dictionaries through the use of a
dictionary interface (Figure 1) which receives a set of triples of the BGP. Given
a triple context, the system seeks in the appropriate dictionary (e.g., search the
object in the concept dictionary if the predicate is rdf:type). The system detects
two cases of unsatisfiability: (i) one of the graph pattern’s element (excluding
variables) is not present in any of the dictionaries, (ii) a graph pattern element
has no occurrences in the datasets and, in the case of a concept or property, has
no instantiated sub-elements occurrences neither. Otherwise, the BGP is satis-
fiable and the module obtains identifiers and statistics associated to each non
variable graph pattern element. Note that in the case of a concept or property
element with sub-elements, it is the identifier associated to its self counterpart
that is returned. In the case of QR1, the identifier and statistic associated to
Professor are respectively 01 010 10 11 000, i.e., Professor ’s self entry, and 0
since LUBM’s datasets do not instantiate directly this concept. This approach
enables to detect unsatisfiable queries rapidly since it detects that the query’s
result set is empty without executing any other steps of the query processing
component. A query is considered unsatisfiable if at least one triple of the BGP
is unsatisfiable otherwise, the whole query is satisfiable.

A satisfiable query is then encoded in terms of identifiers retrieved from the
set of dictionaries. It results in a query containing integer-based graph patterns
and variables. In this step, the statistics associated to concepts and properties
encountered in the BGP may imply some form of reasoning. For instance, con-
sider that a concept C or property P has no instances, then since the query is
satisfiable, it means that C or P has some sub-elements. Hence, some of its direct
or indirect sub-elements may be instantiated and are expected in the result set
of the query. The solution we are proposing is to replace the identifier of C or
P ’s self entry with C or P ’s own identifier, i.e., removing self ’s local identifier



in the query. In the context of QR1, it implies removing 000, self ’s local identi-
fier, from 01 010 10 11 000 which yields to 01 010 10 11. It corresponds to the
Professor concept and is a common prefix to all its subconcepts.

To complete the support for RDFS entailment regime, we have implemented
a materialization-based approach for the rdfs:domain and rdfs:range properties.
Intuitively, we provide, if one is not available, or refine, if one is available, a type
to the subject (resp. object) of a triple whose property has some domain (resp.
range) information. The refinement aspect corresponds to typing a subject (or
object) with the most specific concept among a set of valid ones. This enables
to limit the size of our materialization by preventing over typing. Our typing
mechanism is based on the following RDFS entailment rules (denoted rdfs2 and
rdfs3 in the RDF Semantics W3C Recommendation5): (i) if aaa rdfs:domain xxx.
uuu aaa yyy. then add uuu rdf:type xxx. and (ii) if aaa rdfs:range xxx . uuu aaa
vvv. then add vvv rdf:type xxx.

Let us demonstrate this aspect with an example. In the LUBM ontology,
the axioms > v ∀ advisor−.Person and > v ∀ advisor .Professor resp. define
that the advisor property has the concept Person as domain and Professor as
range. Let also consider a dataset with the {(ex:smith, ub:advisor, ex:gblin),

(ex:gblin, ub:worksFor, ex:esipe)} triples. We now present two cases where,
according to the RDFS entailment regime, the (ex:gblin, ex:esipe) tuple should
be part of the QR1 answer set. In a first case, we assume that neither gblin nor
smith are typed. Then our materialization strategy adds the triples {(ex:smith,
rdf:type, Person), (ex:gblin, rdf:type, Professor)} and ensures the complete-
ness of the answer set. In a second case, the triple {(ex:gblin, rdf:type, Person)}
was part of the dataset and will be replaced by {(ex:gblin, rdf:type, Professor)}
since Professor is more specific than Person. In cases of multiple incomparable
classes for which no ”most specific” class exists then several types are stored
for the considered instance. These materializations are part of our data pre-
processing and make an intensive use of the H2 structure. In Section 4.1, we
emphasized that the H2 structure stores in its value the concepts associated to
the rdfs:domain and rdfs:range of each property. Finally, note that this solution
does not come at the cost of expanding our two-layered structure and it does
not imply any query reformulation.

We now sketch the main aspects of our query execution and optimization
process. A best effort query plan is searched using a set of heuristics. A first
one is especially designed to reduce the cost of navigating in the two-layered
structure, in terms of rank, select and access SDS operations. That is, we try
as much as possible to favor rank operations against select ones since most
implementations guarantee constant time rank operations on bitmap but not for
select ones which either need lot of extra space or logarithmic time. Two other
heuristics are provided to take advantage of state of the art RDF access pattern
[15], and statistics stored in the dictionary structures. Again, these heuristics
have been adapted to reorder some access patterns which is a major source of
optimizations for SPARQL queries containing many graph patterns. This results

5 http://www.w3.org/TR/rdf-mt/#rdf entail



in the generation of query plans taking the form of left-deep join trees which
is being translated and executed in terms of compositions of rank, select and
access SDS operations (and their prefix forms). In order to support DISTINCT,
LIMIT, OFFSET and ORDER BY SPARQL operators, we provide a k-partite graph
based storing system for the candidate tuples that allow us to store and filter
them in an efficient way avoiding as much as possible unnecessary Cartesian
product. Finally, the identifiers of the result are translated in terms of their
associated values in the dictionaries. The supported SPARQL operators needed
the development of optimization techniques in the query execution module: the
UNION of graph patterns requires a lazy approach of common patterns, FILTER
accesses the dictionary and OPTIONAL prevents the creation of bindings in the
absence of a matching for the optional graph patterns.

5 Experimental evaluation

5.1 System and datasets

All experiments have been conducted on a HP Z800 workstation with 2 Quad-
Core Intel Xeon Processors with 12Mbytes L2 cache, 8Gbytes of memory and
running Gentoo 2.6.37 generic x86-64. It contains two 500GB SATA disks run-
ning at 7200 rpm. We used gcc version 4.5.2 running on 64 bits with glibc 2.13.
We modified the libcds v1.0.13 in order to obtain rank prefix and select prefix
operations on the proposed SDS. We have compared our system with RDF-3X
version 0.3.7, BigOWLIM version 3.5 and Jena 2.6.4 together with its TDB
0.8.10. We do not propose a comparison with Hexastore since it was not possible
to load the datasets we are working with. This is due to its in-memory approach
and the large number of set indexes, i.e., 6, it requires to process queries effi-
ciently. Note that this aspect was confirmed in [9] which essentially focuses on
data loading, compression rates and times required for indexes creation. Our
current WaterFowl framework uses pointer-free wavelet trees (which were giving
best results compared to pointer based wavelet trees and wavelet matrices).

In this section, we present the results of our evaluation performed on a set
of synthetic and a real world datasets. The synthetic datasets correspond to
instances of the LUBM [8]. The main characteristics of LUBM are to feature
an OWL ontology for the university domain, to enable scaling of datasets to an
arbitrary size and to provide a set of 14 SPARQL queries of varying complexities.
Out of these queries, 10 require a form of inference, namely dealing with concept
and property hierarchies as well as inverse and transitive roles which we are
not testing since they require OWL entailments. We are testing our system on
datasets for 100 and 1000 universities, resp. 13.4 (1.12Gb) and 133.5 (11.3Gb)
million triples The real-world dataset is Yago (37.5 million triples and 5.32Gb)
and is mainly used on the first aspect of our evaluation.

5.2 Results

The results concern three aspects of our system: (i) memory footprint and time
required to prepare a dataset, (ii) query processing not requiring inferences and



(iii) query answering requiring RDFS entailment regime. The first one aims to
demonstrate that a system designed on SDS possesses interesting properties in
terms of data compression rate, time to prepare a dataset, i.e., total duration
required to create the dictionary, index the data, compute some statistics and
serialize the database structure. It is presented in Table 1 and confirms the
results contained in [9]. We can see that most compressed versions of WaterFowl,
i.e.,mode 2 and 3 relying respectively on pointer-free wavelet tree and wavelet
matrix (while mode 1 uses pointers) require between 5 and 9% of the space
required by RDF-3X and this is even more important compared to BigOWLIM
and Jena TDB. This is due to the high compression rate of the SDS we are
using and the single, opposed to 15 for RDF-3X, index we are generating. The
sizes required for BigOWLIM and Jena TDB are explained by their approach
which require full materialization. Moreover, times to prepare a dataset are about
half of the duration taken by RDF-3X. This is easily explained by the number
of indexes RDF-3X is building. Obviously, due to the materialization, the times
needed to process and store the datasets are even more important for BigOWLIM
and Jena TDB. Finally, our mode 2 (pointer-free Wavelet), based on a pointer-
free wavelet tree implementation seems to be an interesting trade-off between
size of the generated dataset and generation time.

Table 1. Size of database serialization (MB) and Time to prepare datasets

Size in MB Time in sec
univ100 univ1000 Yago univ100 univ1000 Yago

RDF-3X 831,717 7,795,458 2,189,735 240 3050 1090

BigOWLIM 2,411,260 22,600,088 6,348,338 838 10640 3708

Jena TDB 1,492,057 13,984,467 3,928,271 1285 16332 5837

WaterFowl Mode 1 91,539 922,106 271,616 168 2134 768

WaterFowl Mode 2 71,064 720,396 210,556 119 1515 545

WaterFowl Mode 3 77,351 798,829 203,728 107 1488 513

The two next aspects of our evaluation concerns query processing. First, we
consider queries that are not requiring reasoning. Then, we study some queries
requiring the RDFS entailment regime. We consider that by investigating both
aspects of query answering, we are able to highlight the pros and cons of our
complete query processing component. Our evaluation methodology includes a
warm-up phase before measuring the execution time of the queries. This is re-
quired for the 3 compared systems but not for WaterFowl since its data reside
in main-memory. All the queries are first ran in sequence once to warm-up the
systems, and then the process is repeated 5 times. The following tables (Table
2) report the mean values for each query and each system.

In the first context, we compare our approach with the 3 other systems on
a subset of LUBM queries (#1, #2 and #14). Table 2 emphasizes that the per-
formances with the RDF-3X system are comparable. Unsurprisingly, the two
other systems are slower than RDF-3X on Queries #1 and #3. A fact which



Table 2. Query answering times (sec) on univ1000

LUBM QR#1 LUBM QR#2 LUBM QR#14

RDF-3X 1.65 14.88 1640

BigOWLIM 138 5.7 3320

Jena TDB 3.52 2.18 2998

WaterFowl Mode 2 1.80 10.18 1710

WaterFowl Mode 3 1.75 10.13 1680

has been highlighted on many other evaluations. Note that these queries have
different characteristics since they respectively correspond to large input with
high selectivity, complex ’triangle’ query pattern and large input with low se-
lectivity. Query #2 is performed more rapidly by Jena TDB and BigOWLIM
but WaterFowl is faster than RDF-3X. We consider that this is due to a bet-
ter consideration of this query particular pattern. It highlights that our query
optimization has room for improvement.

Table 3. Inference-based query answering times (sec) on univ100

QR#4 QR#5 QR#6 QR#7 QR#10

RDF-3X 4.2 2.5 15.3 1.4 1.6

OWLIM-SE 705 16771 72 1708 3.65

Jena TDB 4.85 6.3 30.7 207 1.55

WaterFowl Mode 2 3.66 2.3 13.4 1.2 1.4

In the context of queries requiring RDFS entailment, we are testing RDF-3X
with query rewriting performed using a DL reasoner against our system. That is,
we have implemented a simple RDFS query rewriting on top of RDF-3X which
generates SPARQL queries with UNION clauses. The RDF-3X approach enables to
perform query rewriting in the context of the considered fastest RDF Store. Note
that the two other systems do not require this machinery since they rely on a ma-
terialization approach. Table 3 highlights that our system slightly outperforms
the inference-enable RDF-3X on a set of five distinct LUBM queries, requiring
different forms of reasoning, i.e., based on concept and property subsumption
relationships. It has already been emphasized that due to its large number of
indexes, RDF-3X is very competitive or even faster than some materialization-
based systems. Due to our ontology elements encoding with prefix enabled navi-
gation and minimalist materialization of rdfs:domain and rdfs:range information,
we outperform all systems on these five queries.

6 Conclusion

We have designed and implemented a novel type of immutable RDF store that
addresses a set of issues of big data and of the semantic web. Each database



instance regroups a set of dictionaries and a dataset represented in a compact,
self-indexed manner using some succinct data structures. The evaluation we have
conducted emphasize that our system is clearly very efficient in terms of data
compression and can thus be considered as an interesting alternative when one
is concerned with data exchange. Moreover, on our query processing experimen-
tations, our system presents performances that are comparable to the domain’s
reference, i.e., RDF-3X. We consider that this is quite a strong encouragement
toward pursuing our work on WaterFowl. We consider that this is due to the
advantage of our highly compressed data and implementing all data retrieving
operations on SDS functions, i.e., access, rank, select and their prefix counter-
parts. We also believe that adapting all our query optimization heuristics on
state of the art solutions is part of the good performances our system provides.
Nevertheless, we are convinced that there is plenty of room for more optimiza-
tions in all modules of WaterFowl, e.g., pipelined parallelism in query execution.

Our future investigations will include the distribution of triples over a cluster
of machines and the support for updates in both the TBox and the ABox, which
is not trivial since actual wavelet trees do not support efficient updates.
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