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Abstract. A wide variety of publicly linked datasets have been anno-
tated with domain-specific ontologies. Annotations can be naturally rep-
resented with graphs, and the knowledge encoded in these annotations
can be mined to discover potential novel relationships. We propose novel
mining techniques that exploit semantics represented by these graphs to
discover relational patterns. Initial experimental results suggest that our
approach can be effectively applied in different biomedical domains, and
exhibit performance comparable to state-of-the-art solutions.
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1 Introduction and Motivation

The number of highly connected datasets has exploded during the last years.
The Linked Open Data (LOD) cloud has more than 50 billion facts from many
different domains, e.g., media, biology, chemistry, economy and energy [1]. The
LOD cloud can be naturally represented as graphs, specifically, with hetero-
geneous information networks. Heterogeneous information networks are graphs
with multiple typed nodes and links that represent different relationships. Exam-
ples of heterogeneous information networks include social networks, the World
Wide Web, research publication networks [10], biological networks, knowledge
networks, among other networks. Due to the diverse meanings in heterogeneous
information networks, mining patterns is difficult without considering the se-
mantic of the typed concepts and relationships. A heterogeneous information
network can be built upon highly structured data in the form of a graph, repre-
senting different types of nodes and edges. As many of these approaches rely on
graph-based tasks, several efficient algorithms have been proposed not only to
consume, but also to mine Linked Data. For example, Saha et al. [20] and Thor
et al. [26] have defined densest subgraphs and graph summarization techniques
to identify patterns between linked datasets of genes.

Furthermore, ontologies are developed by domain experts to capture knowl-
edge specific to some domain. They have been extensively developed and widely
adopted in the last decade. Simultaneously, Linked Open Data initiatives have
made available a diversity of collections that have been annotated with domain-
specific ontologies. These annotations describe properties of these concepts. For
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example, the biomedical community has taken the lead in such activities; every
model organism database has genes and proteins that are widely annotated using
the Gene Ontology (GO). These annotated datasets have created many oppor-
tunities for large scale Linked Data mining. Annotations induce an annotated
graph where nodes correspond to concepts or ontology terms, and edges represent
relationships between concepts. Our research aims as defining novel methodolo-
gies to exploit and mining annotated graph datasets and the semantic knowledge
captured within ontologies to discover complex patterns of semantically related
concepts in the Linked Data. The methodologies are based on various mining
tasks in the Linked Data, including clustering, classification, similarity met-
rics between concepts, relationship prediction and structural learning. We tackle
these mining tasks, their principles and methodologies.

Motivating Example: we motivate our work with the link prediction prob-
lem presented by Fakhraei et al.[8]. The development of new drugs is a time-
consuming and costly procedure, and one possibility is repurposing already ap-
proved drugs for new diseases. Repurposing existing drugs using computational
methods has the benefits of shorter timelines to bring a drug to the market
and reduce its cost. Drugs are molecules that participate in some biomolecular
reaction associated with a disease target. There may be multiple relationships
between drugs and targets. With the goal of predicting drug-target interactions,
we can build a bipartite graph between drugs and targets, where edges are inter-
actions known by the scientific community. We can augment the bipartite graph
with drug-drug and target-target similarities. The similarities between drugs and
between targets have different semantics. For example, drugs can have similar-
ities based on chemical structure or shared side-effects, while gene targets may
share sequence based or gene annotation based similarity [18]. Figure 1(a) shows
a drug-target interaction network. The challenge is that the drug-target interac-
tion graph, with multiple types of similarities, expresses a multi-relational graph
structured knowledge. This drug-target graph, combined with knowledge in on-
tologies and additional LOD resources, will be used for discovery potentially new
drug-target interaction.

2 State of the art

Graph data mining [6] covers a broad range of methods dealing with the identi-
fication of structures and patterns in graphs. Popular techniques include graph
clustering [5], community detection [9] and cliques [16]. Clustering, classifica-
tion and ranking are basic mining functions for information networks. Spectral
graph clustering [27] is state-of-the-art method to do clustering on homogeneous
networks. For heterogeneous networks RankClus [25] is proposed and generates
clusters integrated with ranking. A ranking-based classification of multiple types
of objects, denoted by GNetMine, is proposed by Ming et al. [12]. Link predic-
tion has been extensively studied in the recent years [8, 26]. The problem of a
1-to-1 weighted maximal bipartite match has been applied to many problems,
e.g., semantic equivalence between two sentences and measuring similarity be-
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(a) Drug-Target network

Subgraph of Fold_1_Drugs and Fold_1_Targets.
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Fig. 1. (a) Drug-Target interaction network from [8]. Blue lines expressing drug-drug
similarities, red lines target-target similarities and Green lines are known drug target
interactions. (b) Cluster obtained by our approach on Dataset 1: network of drugs and
targets and their interactions. The red line is a predicted interaction.

tween shapes for object recognition[22]. A key element in finding patterns is
identifying related concepts and similarity metrics can be used to measure on-
tological relatedness. A class of metrics are path-similarity metrics based on the
paths that connect the concepts in a graph. Nodes in the paths can be of the
same type (e.g., PathSim [24]) or they can be heterogeneous (e.g., HeteSim [23]).
Furthermore, semantic similarity metrics can be classified into two categories:
i) structure-based metrics that exploit ontology hierarchy structure to compute
the semantic similarity between terms [14, 2], ii) information content (IC) based
metrics that use IC of concepts derived from corpus statistics to measure the
semantic similarity between terms [19].

Loza et al.[15] apply data mining techniques to estimate the number of bid-
ders in public contracts represented as semantically annotated Linked Data. The
proposed techniques rely on existing machine learning algorithms which are ap-
plied to a relational representation of the linked data. Our proposed approach
also copes this problem but it exploits knowledge encoded in ontologies to un-
cover hidden relational patterns.

3 Problem statement

How much effectively are data mining techniques to discover relational patterns
in annotated Linked Data?. Our research addresses the challenge of mining large
annotated graphs, and exploiting knowledge from ontologies to discover patterns
that uncover hidden relationships between semantically similar data.

Our first research goal is to propose a novel similarity metric based on anno-
tations, called AnnSim, that is able to measure relatedness between concepts in
an annotated graph, based on the similarity of the sets of their annotations with
respect to one or more ontologies. This is the necessary first step to discover
complex patterns in annotated graph datasets. A practical example is identify-
ing the relatedness or similarity of (drug, drug) pairs, based on the annotation
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evidence of conditions or diseases from domain-specific ontologies as the NCI
Thesaurus (NCIt). NCIt Home Page: http://ncit.nci.nih.gov/.

Our second research goal is to discover complex relational patterns, thus we
define an annotation signature between a pair of concepts, e.g., a pair of drugs or
a pair of genes. The annotation signature builds upon the shared annotations or
shared ontology terms between the pair of concepts. The signature further makes
use of knowledge in the ontology to determine the ontological relatedness of the
shared terms. The annotation signature is represented by N groups (clusters)
of ontologically related shared terms. For example, the annotation signature
for a (drug, drug) pair will be a set of N clusters, where each cluster includes a
group of ontologically related disease terms from NCIt. Given a pair of concepts,
and their sets of annotations, Ai and Aj from ontology O, elements ai ∈ Ai

and aj ∈ Aj form the nodes of a bipartite graph (BG). Between nodes ai and
aj there may be an edge or a path through O; an edge is the special case
where ai and aj are identical terms from O. There may be a choice of paths
between ai and aj depending on the the ontology structure and relationship
types captured within O. One can use a variety of similarity metrics, applied to
the edges and paths through the ontology O, to induce a weighted edge between
ai and aj in BG; the weight represents the (ontologically related) similarity
score in the range [0, 1] between ai and aj . Our objective is to determine an
annotation signature based on the BG. There are many alternatives to create
the signature. One could partition the edges of BG with possible overlap of
the nodes. Another solution is to cluster the nodes and edges of BG. One may
also consider a one-to-one bipartite match. The clusters obtained may identify
multiple communities (subgraphs) of ontologically related shared terms, as well
as potentially overlapping communities. Our research on annotation similarity
will explore such patterns that can be used for link prediction or to rank the
graph concepts. Thus, we can exploit ontologically related communities identified
within a data mining framework.

Our third research goal is the development of machine learning frameworks to
identify interesting relational patterns involving ontologically related concepts.

4 Proposed approach and Methodology

We can use the weight of annotation evidence, represented by a set of anno-
tations, to define a metric to compare a pair of concepts. An annotated graph
G=(V,E) is a particular graph comprised of two type of nodes in V : scientific con-
cepts and ontology terms. Given two concepts c1 and c2 from an annotated graph
G=(V,E), we define an annotation similarity metric, AnnSim, based on their sets
of annotations, A1 and A2, respectively. We assume that we have a pair-wise sim-
ilarity between elements of A1 and A2, i.e., sim(a1, a2) ∈ [0, 1] for all a1 ∈ A1

and a2 ∈ A2. The value of sim(a1, a2) is determined by the previous task of onto-
logical similarity. These relationships between terms in A1 and A2 can be repre-
sented as a weighted bipartite graph WBG=(A1∪A2, WE), see Figure 2(a). An
edge between a1 ∈ A1 and a2 ∈ A2 has a weight sim(a1, a2), where sim(a1, a2)
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is computed using a distance metric. The computation of AnnSim first requires
building a bipartite graph with the links in the Cartesian product between the
set of annotations of two scientific terms, and for each of these links compute a
similarity. The aim is to design the best approach to solve the Weighted Bipartite
Matching. We first consider model AnnSim as a 1-to-1 maximal weighted bipar-
tite matching [21], see Figure 2(b). We name this annotation similarity AnnSim,
and it is defined it as follows: Given two concepts c1 and c2 annotated with the
set of terms A1 and A2 in an annotated graph, and let MWBG=( A1∪A2, WEr)
be 1-to-1 maximal weighted bipartite graph matching for a WBG, where WEr ⊆
WE, we have AnnSim(c1, c2) =

2·
∑

(a1,a2)∈WEr sim(a1,a2)

|A1|+|A2| . This definition is in the

style of the well-known Dice coefficient. The maximal similarity of 1.0 is achieved
if and only if both annotation sets have the same cardinality (|A1| = |A2|) and
all edge weights are equal to 1. This approach has limitations. We planned to
obtain solutions to the many-to-many bipartite match problem to compute an
enhanced metric. Initial results are reported at [17].

(a) Weighted Bipartite graphs for drugs
Brentuximab vedotin and Catumaxomab.
Shown similarity values are the highest val-
ues obtained with the metric 1 − dtax[2] on
NCIt

(b) 1-to-1 Maximal Weighted Bipar-
tite Graph Match for Brentuximab ve-
dotin and Catumaxomab. The simila-
rity value of AnnSim is 0.324

Fig. 2. Bipartite graphs for drugs Brentuximab vedotin and Catumaxomab.

We define a version of the Annotation Signature Partition problem as the
partitioning of the edges of BG into clusters such that the value of the aggregated
cluster density is maximized. We develop AnnSigClustering, a clustering solution
that implements a greedy iterative algorithm to cluster the edges in BG. We note
that such a clustering will result in N clusters of the edges of BG with potential
overlap of nodes in different clusters.

Definition 1 (Cluster Density). Given a labeled bipartite graph BG=(Ai∪Aj,
WE) with nodes Ai and Aj and edges WE, a distance metric d, and a subset p

of WE, the cluster density of p cDensity(p) =
∑

(e=(a,b))∈p 1−d(a,b)
|p| .
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Definition 2 (Similar Nodes ∼). Given two nodes a and b, a real number
θ in the range [0 : 1], and a distance metric d, nodes a and b are similar, i.e.,
a ∼ b, iff 1− d(a, b) > θ.

Definition 3 (The Annotation Signature Partition Problem). Given a
labeled bipartite graph BG=(Ai ∪ Aj, WE), a distance metric d, and a real
number θ in the range [0,1]. For each a ∈ Ai and b ∈ Aj, if (a ∼ b) and
¬((a ∈ Aj ∧ b ∈ Ai) ∧ (a 6= b)), then there is an edge e = (a, b) ∈ WE. For
each e = (a, b) ∈ WE, label(e)= 1-d(a, b). The AnnSig Partition Problem iden-
tifies a (minimal) partition P of WE such that the aggregate cluster density P

AnnSig(P ) =
∑

p∈P (cDensity(p))

|P | is maximal.

We model the Annotation Signature Partition Problem using the Vertex Col-
oring Graph (VCG) problem. The Vertex Coloring Graph problem assigns a color
to every vertex in a graph such that adjacent vertices are colored with different
colors and the number of colors is minimized; this problem has been shown to
be NP-hard [13]. Each component of the shared signature of the the Annotation
Signature Partition Problem corresponds to a color in the VCG problem. We
extend a well-known approximation named the DSATUR algorithm [3] to solve
the VCG to obtain a signature and compute the AnnSigClustering value.

AnnSigClustering is a greedy iterative algorithm, based on DSATUR algo-
rithm [3], to solve the Annotation Signature Partition Problem. AnnSigCluster-
ing adds an edge to a cluster following a greedy heuristic to create clusters that
maximize the cluster density. AnnSigClustering assigns a score to an edge e in
WE according to the number of edges whose adjacent terms are dissimilar to the
terms of e, and that have been already assigned to a cluster. Then, edges are
chosen in terms of this score (descendant order). Intuitively, selecting an edge
with the maximum score, allows AnnSigClustering to place first the edges with
more restrictions; this is one for which there is a smaller set of potential clusters.
The selected edge is assigned to the cluster that maximized the cluster density
function. Time complexity of AnnSigClustering is O(|WE |3).

5 Preliminary Results

The goal of our evaluation is to validate if annotation signatures group together
meaningful terms across shared annotations. Additionally, we evaluate the im-
pact of the semantics encoded in the ontologies on the quality of the signature.
We perform an evaluation of applying the AnnSigClustering results for link pre-
diction. We consider two different datasets. Dataset 1 is based on a network
of drugs and genetic targets and their interactions. The interactions were ob-
tained from DrugBank [28]. The dataset has 315 drugs, 250 targets and 1306
interactions. We use 5 drug-drug similarities (Chemical-based, Ligand-based,
Expression-based, Side-effect-based, and Annotation-based) and 3 target-target
(Sequence-based, Protein-based and Gene Ontology-based) similarities, obtained
from Perlman et al. [18]. Dataset 2 is comprised of twelve drugs within the inter-
section of monoclonal antibodies and antineoplastic agents; the name of the drug
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is followed by the abbreviation that we use in reporting results: Alemtuzumab,
Bevacizumab, Brentuximab vedotin, Cetuximab, Catumaxomab, Edrecolomab, Gem-
tuzumab, Ipilimumab, Ofatumumab, Panitumumab, Rituximab, and Trastuzumab.
The protocol to create the dataset is as follows: Each drug was used to retrieve
a set of clinical trials in LinkedCT circa September 2011 (linkedct.org). Then
each disease associated with each trial was linked to its corresponding term in
the NCI Thesaurus version 12.05d; annotation was performed by NCIt experts.
Our group of evaluators included two experts who develop databases and tools
for the NCI Thesaurus, and two bioinformatics researchers with expertise on the
NCIt and other biomedical ontologies.

We analyze the quality of AnnSigClustering predicting new iterations be-
tween drugs and targets in Dataset 1. Similarities between two drugs and two
targets are considered to decide if they are or not related. We consider different
thresholds between similarities drugs and targets. AnnSigClustering was used to
compute the partition of the iterations between drugs and targets. Given a clus-
ter, an edge between a drug and target in the cluster that was not included in the
cluster was considered as a prediction. The graph density of the cluster was used
as the probability that one edge was an interaction or not. We computed the
Area Under the ROC Curve (AUC) to analyze the quality of our techniques. The
state-of-the-art solution for this dataset is by Fakhraei et al.[8], and proposes a
drug-target prediction supervised method based on PSL [4]. Table 1 shows the
best result of our approach for Dataset 1. Figure 1(b) illustrates the cluster
149, the drugs DB00836 (Loperamide), DB01244 (Bepridil) and DB01100 (Pi-
mozide) are associated with three gene targets. Predicted interactions are shown
as broken edges.

Table 1. AnnSigClustering best result versus Fakhraei et al.[8] on the our approach
prediction. Similarity drug-drug: Expression-based and target-target: Sequence-based
Method AUC Execution Time

AnnSigClustering 0.9431 7 min (Intel i7 3.3 Ghz)

Fakhraei et al.[8] on this prediction 0.9269 3h + 10h of learning (Xeon 2.9 GHZ)

In Dataset 2, our challenge is to identify connectivity patterns and knowl-
edge encoded in each component. The connectivity pattern within each cluster
provides insight into the ontological relatedness of the diseases. In Figure 3(a)
Carcinoma on the left is connected to 8 terms on the right. In Figure 3(b) is a
more complex pattern, where Sarcoma and Breast Neoplasm show high between-
ness centrality. Sarcoma on the left is connected to 9 drugs on the right, and Breast

Neoplasm on the right is connected to 8 diseases on the left. None of the other
drugs has more than one adjacent drug in this subgraph. In contrast, in Figure
3(c), we see a much more general many-to-many connection pattern between the
diseases on the left and right. Finally, Figure 3(d) shows a more complex con-
nectivity pattern where the terms are ontologically related but they are placed
within three disconnected graphs. The four terms Diffuse Intrinsic Pontine

Glioma, Spinal Cord Ependymoma, Carcinoma and Squamous Cell Neoplasm form
the most well connected cluster. Comments from the evaluators noted that while
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(a) Catumaxomab-Trastuzumab (b) Ipilimumab-Trastuzumab Red

(c) Ipilimumab-Trastuzumab Cyan (d) Bevacizumab-Cetuximab Brown

Fig. 3. Connectivity Patterns within Each Cluster for θ = 0.5

groups such as Figure 3(a) that included generic terms such as Carcinoma were
valid, they did not convey useful information. In contrast, groups in Figures 3(c)
and (d), that had more specific terms and were more densely connected, had the
potential to be more meaningful.

6 Evaluation Plan

We will develop a semantic metric by the many-to-many connection pattern be-
tween two concepts. Evaluation of the our approach will be performed in other
biomedical datasets that represent diverse type of relationships between drugs,
diseases, targets, and enzymes. Our mining methods will use general knowl-
edge base and ontologies as OpenCyc1 and Yago [11] and other specialized as

1 http://www.cyc.com/platform/opencyc
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SNOMED CT2. We will develop a algorithm for learning threshold and a machine
learning framework to obtain semantically related structures. Furthermore, we
will compare with state-of-the-art learning-based approaches [7] and predicting
system as PSL [4] for predicting drug-target interactions.

7 Conclusions and future work

We showed the feasibility of mining patterns semantically related in the LOD. We
have defined the Annotation Signature Partitioning Problem and the AnnSigClus-
tering algorithm to develop the components of a signature based on shared anno-
tations and ontological relatedness. We have analyzed the effects of considering
knowledge encoded in the ontologies used to annotate Linked Data. We have
identified clusters can be used for link prediction and discover complex patterns.
In the future we plan to conduct a deeper evaluation, as indicated in the previous
section, and thus determine the potential discovery capability of the approach.
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